|
|
|
|
 |
|
Améliorer le traitement des anémies grâce à une nouvelle découverte sur le métabolisme du fer |
|
|
|
|
|
Améliorer le traitement des anémies grâce à une nouvelle découverte sur le métabolisme du fer
26 Fév 2024 | Par Inserm (Salle de presse) | Physiopathologie, métabolisme, nutrition
?
Le fer est un élément indispensable à de nombreux processus biologiques, dont le transport et le stockage de l’oxygène dans l’organisme, en tant que constituant essentiel de l’hémoglobine des globules rouges. © Inserm/Claude Féo
L’anémie est un problème de santé publique majeur à travers le monde, qui affecte environ un tiers de la population. Les causes de l’anémie sont multiples mais les plus fréquentes sont un défaut de production de globules rouges, un manque de fer dans le sang ou encore des maladies génétiques comme les thalassémies. Mieux comprendre le métabolisme du fer est essentiel pour améliorer la prise en charge les nombreux patients touchés. Dans une nouvelle étude, des chercheurs et chercheuses de l’Inserm au sein de l’Institut de recherche en santé digestive (Inserm/INRAE/université Toulouse III – Paul-Sabatier/École nationale vétérinaire de Toulouse), ont identifié le rôle majeur d’une protéine appelée FGL1 dans le métabolisme du fer. Leur découverte ouvre la voie à de nouvelles perspectives cliniques dans le traitement de l’anémie. Ces résultats sont publiés dans la revue Blood.
L’anémie est une maladie qui se caractérise par un nombre de globules rouges – ou un taux d’hémoglobine des globules rouges – inférieur à la normale. Elle constitue un problème de santé publique majeur. En effet, il s’agit d’un facteur important de morbidité et de mortalité pour un tiers de la population mondiale.
L’anémie peut être causée par un déficit en fer dans le sang consécutif à des carences alimentaires, des infections, des maladies chroniques, des menstruations abondantes, des problèmes pendant la grossesse ou par des maladies génétiques impactant la production de globules rouges (les thalassémies).
Le fer est un élément indispensable à de nombreux processus biologiques, comme le transport et le stockage de l’oxygène dans l’organisme, en tant que constituant essentiel de l’hémoglobine des globules rouges. En d’autres termes, lorsque le fer est présent en trop faible quantité dans l’organisme, il n’y a pas non plus assez d’hémoglobine et de globules rouges dans le corps pour transporter l’oxygène vers les organes et tissus, ce qui entraîne à terme une défaillance de ces organes.
Pour aller plus loin : « C’est quoi l’hémoglobine ? »
Cependant, un excès de fer est également toxique pour l’organisme. Les apports en fer nécessitent donc d’être finement régulés pour éviter un déficit ou un excès à l’origine de complications cliniques sévères.
Comprendre le métabolisme du fer
Depuis plusieurs années, les connaissances sur l’anémie et sur le métabolisme du fer ne cessent de progresser. Il est ainsi désormais bien connu que le taux en fer dans l’organisme est régulé par une hormone appelée « hepcidine ».
Par ailleurs, on sait aussi maintenant qu’en cas de besoin accru en fer de l’organisme, comme c’est le cas lors d’une anémie, une hormone appelée « érythroferrone » (ERFE) vient réprimer l’expression de l’hepcidine dans le foie. Ce processus permet d’approvisionner la moelle osseuse en fer pour synthétiser de nouveaux globules rouges et augmenter les niveaux d’hémoglobine.
L’identification de ERFE en 2014 par le chercheur Inserm Léon Kautz et ses collègues a constitué une étape importante dans ce domaine de recherche. Néanmoins, ces données obtenues il y a dix ans suggéraient déjà qu’ERFE n’était pas la seule hormone à contrôler ce processus. L’hypothèse des scientifiques était qu’une seconde protéine, inconnue jusqu’ici, exerçait une fonction similaire.
Un nouveau facteur identifié
C’est ce qu’ils ont désormais confirmé en menant de nouvelles expériences dans des modèles murins d’anémie, dans deux cas précis : lors d’une synthèse accrue de globules rouges visant à corriger une anémie induite chez la souris et chez des souris atteintes de thalassémie.
Les scientifiques ont d’abord étudié les mécanismes moléculaires activés dans le foie des animaux pour identifier les gènes dont l’expression était augmentée lors de l’anémie. Ils ont ainsi constaté que l’expression du gène codant pour la protéine FGL1 était augmentée dans le foie lorsque la concentration en oxygène diminue.
Les chercheurs ont ensuite produit différentes formes de la protéine FGL1 pour tester son mode d’action in vivo chez la souris et in vitro dans des cellules hépatiques humaines. Ils ont pu montrer que son mode d’action est similaire à celui de l’hormone ERFE, car FGL1 réprime aussi l’expression de l’hepcidine.
« Outre les aspects fondamentaux de ces travaux dans la compréhension de de l’anémie, nous pensons que l’identification du rôle de FGL1 conduira au développement de nouvelles stratégies thérapeutiques pour le traitement d’anémies d’origines diverses et pour lesquelles les traitements actuels sont inefficaces », souligne Léon Kautz, chargé de recherche à l’Inserm.
Pour l’heure, l’équipe va d’abord mener des travaux complémentaires pour vérifier que les taux de FGL1 sont bien augmentés dans le sang de patients atteints de différents types d’anémie. Mais les scientifiques comptent bien ensuite aller plus loin. Ainsi, cette étude a déjà donné lieu à deux dépôts de brevet par Inserm Transfert.
D’une part, le premier brevet vise à mieux traiter les anémies consécutives à des maladies chroniques, telles le cancer. L’objectif est d’identifier des molécules analogues ou activant la synthèse de FGL1, qui diminueraient l’expression de l’hepcidine chez ces patients et permettraient d’augmenter leurs niveaux d’hémoglobine.
D’autre part, les thalassémies se caractérisent par des niveaux très faibles d’hepcidine ce qui conduit à une surcharge en fer délétère pour les organes, à l’origine d’une mortalité élevée. L’équipe a émis l’hypothèse que FGL1 serait aussi impliquée dans ce processus. Le second brevet vise donc à réaliser la preuve de concept que l’inhibition de FGL1 pourrait améliorer les surcharges en fer des patients souffrant de thalassémies.
DOCUMENT inserm LIEN |
|
|
|
|
 |
|
Une supplémentation en vitamine pourrait améliorer certains symptômes d’une myopathie sévère |
|
|
|
|
|
Une supplémentation en vitamine pourrait améliorer certains symptômes d’une myopathie sévère
29 Oct 2024 | Par Inserm (Salle de presse) | Biologie cellulaire, développement et évolution
Coupes de muscles de souris sauvage (WT) ou dépourvues de MTM1 (KO), sans (eau) ou avec une supplémentation en précurseur de vitamine K. La coloration permet d’apprécier que la taille des fibres musculaires des souris sans MTM1 augmente jusqu’à une taille normale avec la supplémentation. © Charlotte Gineste, IGBMC, Illkirch
La myopathie myotubulaire est une maladie génétique rare due à des mutations d’un gène, le gène MTM1. Une étude menée chez l’animal par des chercheurs de l’Inserm du CNRS et de l’université de Strasbourg à l’IGBMC, en collaboration avec des équipes américaines apporte des précisions sur les mécanismes sous-jacents de cette maladie. Ces travaux, publiés dans la revue Science, suggèrent qu’une supplémentation en vitamine K pourrait améliorer certains symptômes de la maladie, ouvrant ainsi de nouvelles perspectives thérapeutiques.
La myopathie myotubulaire, aussi appelée « myopathie centronucléaire liée au chromosome X », est une maladie génétique rare et sévère affectant les nouveau-nés et enfants. Elle touche environ un enfant sur 50 000. Liée à une mutation sur le gène MTM1 situé sur le chromosome X, elle se manifeste par une altération de la taille et de la forme des fibres musculaires. Les principaux symptômes sont une faiblesse musculaire généralisée et une détresse respiratoire.
Il n’y a pas de thérapie à l’heure actuelle et les connaissances sur la myopathie myotubulaire sont encore parcellaires. Grâce à une collaboration entre les équipes de Jocelyn Laporte, directeur de recherche Inserm à l’IGBMC et Llyod Trotman à Cold Spring Harbor (USA), les mécanismes de cette maladie ont néanmoins pu être précisés. Les scientifiques ont notamment mis en évidence qu’une supplémentation en vitamine pro-oxydante pourrait améliorer les symptômes de la maladie dans un modèle animal.
Les effets d’une supplémentation en vitamine K
Dans la myopathie myotubulaire, la perte de la protéine MTM1, liée à la mutation du gène du même nom, entraîne un surplus d’un lipide appelé PI3P. Dans ce contexte, les scientifiques s’intéressent à une enzyme, la kinase VPS34, qui pourrait être l’une des clés pour comprendre ce mécanisme. En effet, on sait que VPS34 produit ce lipide et s’oppose à l’action de la protéine MTM1. Elle pourrait donc être un levier à exploiter pour tenter d’agir sur la maladie.
Dans cette étude, les scientifiques ont commencé par montrer que l’action de VPS34 peut être bloquée par un mécanisme d’oxydation. Fort de ce constat, ils ont cherché à déterminer si ce « blocage » pouvait avoir un effet pour corriger la myopathie myotubulaire.
Pour cela, ils se sont intéressés à une vitamine bien connue, la vitamine K, qui est naturellement présente dans les légumes verts à feuilles (tels que chou vert, épinards et chou frisé), l’huile de soja et de colza. En effet, cette vitamine à des propriétés oxydantes.
Les scientifiques ont donc ajouté un précurseur de la vitamine K à l’alimentation de souris modèles de myopathie myotubulaire. Ils ont montré que cette supplémentation en vitamine améliore significativement l’espérance de vie de ces souris ainsi que la masse et l’organisation musculaire, et par voie de conséquence leur fonction motrice.
« Ces résultats encourageants chez l’animal nous confortent dans l’idée qu’agir sur la kinase VPS34, via la supplémentation en vitamine K, pourrait être une piste prometteuse pour améliorer les symptômes de la maladie », explique Jocelyn Laporte.
Ces résultats devront maintenant être validés dans des études plus larges et des essais cliniques. A terme, ils pourraient conduire à recommander la supplémentation en vitamine K pour les patients atteints de myopathie myotubulaire, dans l’espoir notamment d’améliorer leur motricité et leur autonomie.
DOCUMENT inserm LIEN |
|
|
|
|
 |
|
Maladies cardiovasculaires : un médicament à l’essai pour prévenir de la sténose aortique |
|
|
|
|
|
Maladies cardiovasculaires : un médicament à l’essai pour prévenir de la sténose aortique
25 Fév 2025 | Par Inserm (Salle de presse) |
Immunologie, inflammation, infectiologie et microbiologie | Physiopathologie, métabolisme, nutrition
Visualisation des collagènes constitutifs d’une fibrose cardiaque dans le coeur d’une souris modèle pour l’hypertrophie cardiaque causée provoquée par une sténose aortique. Le collagène I est marqué en vert, le collagène III en rouge. © C Heron et D Godefroy/ Inserm.licence CC-BY-NC 4.0 international.
Elle est l’une des pathologies cardiaques les plus fréquentes chez le sujet âgé. En effet, la sténose aortique concerne près de 5 % des adultes de plus de 65 ans. Cette maladie grave, due à une calcification progressive de la valve aortique, demeure à ce jour sans traitement médicamenteux efficace. Une équipe de recherche du CHU de Lille, de l’Inserm, de l’Université de Lille et de Institut Pasteur de Lille, a priorisé ses recherches sur l’identification de médicaments capables de stopper ou de ralentir ce processus de calcification. Les résultats de ces travaux ont été publiés ce 24 février dans la revue Circulation.
« Cette découverte pourrait non seulement améliorer rapidement la prise en charge des patients souffrant de sténose aortique, mais également prolonger la durée de vie des prothèses valvulaires artificielles. » Prs Sophie SUSEN et Eric VAN BELLE, médecins-chercheurs au CHU de Lille.
Le rétrécissement aortique calcifié, appelé également sténose aortique dégénérative, est la maladie des valves cardiaques la plus fréquente dans le monde occidental. Sa fréquence augmente avec l’âge, car les tissus se rigidifient et se calcifient avec le temps. Elle se manifeste par un essoufflement à l’effort, parfois même au repos ; un gonflement des chevilles ou des jambes ; des douleurs thoraciques et parfois même des évanouissements à l’effort. En cas de sténose aortique sévère, le cœur doit travailler beaucoup plus à chaque battement pour pomper la même quantité de sang. Au lieu d’éjecter le sang à travers un orifice de la taille d’une pièce de deux euros, il doit le faire à travers un orifice de la taille d’une pièce de 50 centimes. En l’absence de traitement, le cœur devient plus gros et s’affaiblit progressivement. Cette maladie évolue classiquement vers une défaillance irréversible du cœur avec un risque d’œdème du poumon et de décès précoce. Une fois les symptômes présents, le taux de mortalité sans intervention TAVI (implantation de valve aortique par voie percutanée) ou chirurgicale est de plus de 30% à un an et 50% à deux ans.
Prévenir de la calcification : un défi majeur en cardiologie
La sténose aortique est un problème mécanique. L’orifice par lequel le sang est éjecté étant trop petit, le seul moyen actuel de l’agrandir est de remplacer la valve aortique. C’est dans cette optique que l’avènement des techniques de remplacement percutané a fortement progressé avec l’utilisation des bioprothèses. Toutefois, celles-ci ont tendance à calcifier également 10 à 15 ans après leur implantation, rendant nécessaire une nouvelle intervention, souvent risquée.
L’identification de cibles thérapeutiques permettant de ralentir ou de prévenir ces mécanismes de calcification reste un défi majeur en cardiologie. La communauté scientifique et les sociétés savantes considèrent la découverte de molécules capables de stopper ou ralentir ce processus comme une priorité. En ce sens, l’équipe des Pr Sophie SUSEN et Eric VAN BELLE (Inserm, Université de Lille, CHU de Lille, Institut Pasteur de Lille) a adopté une approche allant du modèle cellulaire au pré-clinique, combinant de multiples analyses permettant l’identification de cibles pharmacologiques innovantes, tout en favorisant le repositionnement de molécules déjà commercialisées.
Un dérivé de la vitamine A comme médicament contre la calcification de la valve
En collaboration avec l’Hôpital Européen Georges Pompidou et l’European Homograft Bank de Bruxelles, l’équipe lilloise s’est appuyée sur des cohortes de patients suivis au CHU de Lille.
Grâce à une approche d’étude de l’expression des gènes de valves calcifiées et non calcifiées, les chercheurs ont mis en évidence la forte réduction de l’expression de l’enzyme ALDH1A1 permettant la synthèse d’un dérivé de la vitamine A dans les valves atteintes de sténose aortique. Cette réduction impactant certaines cellules valvulaires et favorisant le développement d’une nature plus calcifiante.
Grâce à cette mise en évidence, les chercheurs se sont intéressés à l’acide rétinoïque, le principal produit synthétisé par l’enzyme à partir de la vitamine A. Ils ont découvert que celui-ci était efficace in vitro et dans deux modèles animaux précliniques de dégénérescence tissulaire pour contrer la calcification.
Ces travaux, publiés ce 24 février dans la revue Circulation, confirment que l’acide rétinoïque protège les cellules valvulaires de toute transformation calcifiante.
Déjà commercialisé et utilisé comme traitement pour des indications en oncologie ou dermatologie, l’acide rétinoïque offre une opportunité de disponibilité rapide et sûre pour traiter la sténose aortique et prévenir la dégénérescence des bioprothèses. Ces résultats ouvrent la voie à des essais cliniques, capables d’améliorer la qualité de vie des patients et de prolonger la durée de vie des bioprothèses.
DOCUMENT inserm LIEN |
|
|
|
|
 |
|
Maladies de la rétine : la transferrine préserve la vision |
|
|
|
|
|
Maladies de la rétine : la transferrine préserve la vision
09 Jan 2019 | Par Inserm (Salle de presse)
| Neurosciences, sciences cognitives, neurologie, psychiatrie
Des chercheurs de l’Inserm et du service ophtalmologie enfants et adultes de l’hôpital Necker-Enfants malades AP-HP ont montré qu’une accumulation toxique du fer survient dans plusieurs modèles de maladies rétiniennes et que la transferrine, protéine naturelle fixant le fer, contrebalance cet effet. Cette étude représente une nouvelle étape vers l’utilisation de la transferrine comme traitement complémentaire à la chirurgie afin de préserver la vision notamment chez des patients atteints de décollement de la rétine. Ces résultats sont publiés dans la revue Science Advances.
Les maladies de la rétine sont une cause majeure de malvoyance et de cécité. Dans le cas d’un décollement de la rétine, la mort des photorécepteurs et la perte de vision permanente sont causées par la séparation de la rétine de sa couche externe pigmentée entre lesquelles s’immisce du liquide dit sous-rétinien (SRF). L’incidence de cette pathologie chez l’adulte varie entre 10 et 55 pour 100 000 individus/an et est plus importante chez les personnes atteintes de myopie. Malgré les importants progrès réalisés dans les techniques chirurgicales, le « recollement » de la rétine ne permet pas une récupération visuelle totale et impacte fortement la qualité de vie. L’amélioration de la vision après une chirurgie du décollement de la rétine est donc un défi thérapeutique.
Le fer est un composant biologique important pour catalyser les réactions enzymatiques. Mais lorsqu’il est mal utilisé par l’organisme, il génère de mauvaises réactions et crée des composants cellulaires nocifs. C’est ainsi que la mort des cellules rétiniennes médiée par le fer est soupçonnée de se produire sous diverses formes de dégénérescence de la rétine. Cependant aucune corrélation entre le fer et la fonction visuelle n’avait été montrée jusqu’à présent.
Dans cette nouvelle étude, des chercheurs de l’Inserm ont évalué la présence de fer dans l’œil comme marqueur prédictif du décollement de la rétine et comme cible thérapeutique de la maladie. Pour cela, ils ont mesuré la présence de fer dans la partie vitrée de l’œil et dans le liquide sous-rétinien des patients. Ils ont alors montré que l’augmentation de la saturation en fer est corrélée à une mauvaise récupération visuelle. In vitro et in vivo, le fer induit une nécrose immédiate et une mort cellulaire (apoptose) retardée des neurones.
Des études précédentes ont montré, sans pouvoir l’expliquer, que dans divers modèles animaux le traitement par la transferrine exerçait des effets protecteurs sur les neurones de la rétine. Dans ce travail, les chercheurs démontrent que la transferrine, en identifiant les voies moléculaires impliquées, diminue à la fois l’apoptose et la nécrose induites par le décollement de la rétine.
La transferrine, traitement d’appoint à la chirurgie
Pour aller plus loin, les chercheurs ont donc testé l’hypothèse d’une supplémentation en transferrine comme traitement d’appoint à la chirurgie pour améliorer la qualité visuelle des patients.
A la fois sur des cellules de rétine humaine en culture et in vivo sur des modèles animaux, l’injection oculaire locale de transferrine semble préserver la rétine. De plus, même si elle est administrée tardivement alors que la maladie est déjà déclarée, la transferrine peut prévenir d’autres altérations rétiniennes ainsi que la mort cellulaire.
Emilie Picard, chercheuse Inserm en charge de l’étude précise que : « ces résultats sont très prometteurs, toutes les maladies dégénératives de la rétine sont associées à une accumulation de fer. Cela implique que la transferrine pourrait constituer un nouveau traitement pour ces maladies qui sont fréquemment cumulées et invalidantes. »
D’ores et déjà, la société Eyevensys, start-up issue du centre de recherche des Cordeliers, projette d’utiliser une technologie en phase clinique pour d’autres essais de thérapie génique, ceci afin de produire de la transferrine de façon contrôlée pour les maladies rétiniennes dégénératives.
DOCUMENT inserm LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 ] - Suivante |
|
|
|
|
|
|