ecole de musique piano
     
menu
 
 
 
 
 
 

NANOSCIENCES ...

 

 

 

 

 

 

 

Paris, 28 juin 2016
Première pierre du Centre de nanosciences et de nanotechnologies

Le Centre de nanosciences et de nanotechnologies (C2N, CNRS/Université Paris-Sud), créé au 1er juin 2016, regroupe deux laboratoires franciliens leaders dans leur domaine : le Laboratoire de photonique et de nanostructures (CNRS) et l'Institut d'électronique fondamentale (CNRS/Université Paris-Sud). La première pierre de ce nouveau laboratoire a été posée le mardi 28 juin 2016 sur le campus de l'université Paris-Saclay, en présence de Thierry Mandon secrétaire d'État chargé de l'Enseignement supérieur et de la Recherche. Cette nouvelle structure, qui hébergera la plus grande centrale de nanotechnologie francilienne du réseau national Renatech1, se place dans une perspective ambitieuse : constituer, en France, un laboratoire phare de niveau mondial pour la recherche en nanosciences et en nanotechnologies. Le C2N, avec son bâtiment de 18 000 m², représente le plus grand projet immobilier du CNRS depuis 1973. Conduit conjointement par le CNRS et l'université Paris-Sud depuis 2009, ce projet s'inscrit dans l'opération d'intérêt national Paris-Saclay portée par l'Etablissement public d'aménagement Paris-Saclay.
L'implantation du Centre de nanosciences et de nanotechnologies (C2N) au cœur du plateau de Saclay, dans le quartier de l'école Polytechnique, a été initiée dans le cadre du plan Campus en 2009. Elle permet de renforcer la dynamique de l'écosystème scientifique des nanosciences et nanotechnologies en Ile-de-France.

Le C2N mène ses recherches dans de nombreux domaines innovants dont la science des matériaux, la nanophotonique2, la nanoélectronique3, les nanobiotechnologies et les microsystèmes, ainsi que dans ceux des nanotechnologies (voir des exemples de travaux de recherche en fin de texte). Structuré en quatre départements scientifiques, le C2N aborde des recherches à la fois fondamentales et appliquées. Il représentera le pôle de référence en matière de nanosciences et nanotechnologies de l'université Paris-Saclay. Plus largement, à l'échelle européenne, il constituera l'un des plus grands centre académique de nanophotonique et, avec les acteurs locaux, l'un des plus grands consortiums en spintronique. Le C2N participe donc au rayonnement de la communauté à l'international. Ainsi l'université Paris-Sud vient d'être reconnue 42e établissement mondial en science des matériaux par le dernier classement de Shanghai en ingénierie (juin 2016).

Au cœur du projet du C2N, la salle blanche (2800 m²) de la centrale de technologie sera la plus grande plateforme de ce type à l'échelle nationale. Elle constituera le pôle francilien du réseau national des grandes centrales académiques Renatech, réseau d'infrastructures et de moyens lourds en micro et nanotechnologie. Cette centrale sera ouverte à l'ensemble des acteurs académiques et industriels du domaine des nanosciences et des nanotechnologies afin qu'ils puissent y développer leurs technologies. Un espace sera ainsi réservé à l'accueil d'entreprises, notamment des start-up et des PME, pour des développements technologiques spécifiques. La formation à la recherche sera également au centre des priorités du C2N, avec notamment la mise en place d'une salle blanche d'entraînement, en conditions réelles, réservée à la formation pratique d'étudiants, stagiaires, ingénieurs et chercheurs désireux d'apprendre.

Ce projet immobilier d'environ 92 millions d'euros a été financé à hauteur de 71 millions d'euros par le Programme d'investissements d'avenir, 12,7 millions d'euros par le CNRS, qui contribuera également au déménagement des deux laboratoires et au raccordement des équipements à hauteur de 4,3 millions d'euros. Le foncier s'élevant à 4,32 millions d'euros a été acquis par le CNRS en 2014. La conception du bâtiment a été confiée au groupement ARTELIA (structure ingénierie et bureau d'étude) et à l'atelier d'architecture Michel Rémon et le chantier à Bouygues Ouvrages Publics, Engie Axima, GER2I, Engie Ineo et Eurovia.

Les travaux ont débuté en novembre 2015 et se termineront à l'automne 2017. Les 18 000 m² du bâtiment, regroupant les laboratoires expérimentaux (3400 m²), les bureaux (2900 m²) et la salle blanche (2800 m²), accueilleront fin 2017 entre 410 et 470 personnes, réparties entre personnels permanents (chercheurs et enseignant-chercheurs, ingénieurs, techniciens et administratifs) et non permanents (doctorants, post doctorants, étudiants, techniciens stagiaires, visiteurs, etc.).


  DOCUMENT           cnrs       LIEN

 
 
 
 

LES ROBOTS SOCIAUX

 

Les premiers pas des robots sociaux


spécial robots - par Alexis Drogoul et Jean-Daniel Zucker dans mensuel n°350 daté février 2002 à la page 91 (2145 mots)
Après Aibo, les robots guides de musée et les robots nurse, des expérimentations mettent en présence une colonie de robots et des humains dans le cadre de leur vie quotidienne. Une perspective révolutionnaire.

PourquoiR2D2, un droïde non humanoïde, est-il régulièrement cité, dans les nombreux sondages réalisés à propos de Star Wars , comme l'un des personnages préférés des spectateurs, alors qu'il ne possède aucun des attributs que l'on prête traditionnellement, dans la littérature de science-fiction, aux robots « évolués » ? Il est certes doté d'un aspect plutôt sympathique et rassurant, mais son mode de locomotion est rudimentaire, ses possibilités de préhension ou d'action particulièrement pauvres, ses capacités de communication réduites à des sifflements et bourdonnements incompréhensibles sauf à quelques autres robots, qui sont nécessaires pour décrypter ce qu'il dit, et son « expressivité » ne va pas au-delà d'un clignotement de lampe sur sa face avant. Rien qui puisse réellement, à première vue, déclencher le moindre engouement ! Peut-être faut-il aller chercher ailleurs, alors, ce qui, en dépit de son altérité radicale, rend ce robot si attachant ... et si proche de nous.

La raison essentielle tient à la place qu'il occupe aux côtés des héros du film. Tout en étant très différent d'eux, physiquement et - sans doute - psychologiquement, il apparaît paradoxalement mieux intégré à leur communauté que les autres robots, dont la plupart ne sont bons qu'à servir d'esclaves artificiels. Dans la plupart des scènes où il se produit, ses faibles capacités d'action font qu'il a autant besoin de l'aide des hommes que ceux-ci ont besoin de ses connaissances concernant le monde « électronique », créant de la sorte l'impression troublante d'une égalité qui n'est pas simplement formelle. Son « autonomie » est en fait comparable à l'autonomie dont dispose chacun des êtres vivants présents dans Star Wars , car, bien que capable de prendre des décisions seul, il dépend en grande partie de son environnement social pour pouvoir fonctionner correctement. En ce sens, R2D2 est l'archétype de ce qu'il convient d'appeler un robot socialement situé ou robot social, pour faire court, robot autonome capable d'évoluer et prévu pour fonctionner quelles que soient ses fonctions au sein d' environnements socialisés , c'est-à-dire des milieux façonnés, contrôlés et occupés par les êtres humains, et essentiellement prévus pour eux. Cela sans qu'il ait besoin de « tricher » en jouant, par exemple, de son apparence physique : il est et reste aux yeux de tous un robot qui ne « singe » pas l'homme, à qui il est pourtant possible de conférer une individualité, voire une intentionnalité, aussi naturellement qu'aux autres personnages.

Droïdes de service. Il est possible de distinguer, dans son comportement, quelques-uns des traits fondamentaux qui pourraient servir à caractériser ce qui en fait un robot social. D'abord physiquement situé dans le même monde que ses utilisateurs, en interaction constante avec eux, il se montre capable de réagir et d'agir, avec ses moyens limités, de façon fluide et naturelle, au point qu'aucune de ses actions ne semble « hors de propos » ou déplacée. Il est également capable d'entretenir des relations personnalisées avec les autres personnages, relations qui s'appuient sur l'histoire des interactions qu'il a pu avoir avec eux.

Second point : bien qu'il fasse partie de la catégorie des « droïdes de service », il est parfaitement capable, dans les situations qui l'exigent, d'utiliser les autres protagonistes à son bénéfice. En ce sens, la relation d'instrumentalisation qu'il entretient avec ses « utilisateurs » n'est pas à sens unique : on se sert autant de lui qu'il sait se servir des autres, par exemple quand son état exige des réparations qu'il est incapable d'effectuer seul. Troisième point : son comportement évolue au fur et à mesure des situations auxquelles il est confronté, ce qui montre qu'il est capable d'apprendre, aussi bien par lui-même que par interaction avec les autres personnages. Nulle part, dans les différents films de la saga, ne voit-on ainsi un personnage être obligé de le « programmer » pour une mission particulière, alors que son comportement démontre une plasticité impressionnante. En l'absence de tout dialogue, il semble même capable de reconnaître les intentions des personnages qui l'entourent et d'agir en fonction de ces intentions. Enfin il apparaît, en dépit de son altérité fondamentale, comme parfaitement intégré au monde social qui l'entoure, et pas simplement comme le serait un objet ou un outil un peu sophistiqué. Il a une place à part entière dans le groupe, place reconnue par les autres, qui peut même évoluer en fonction des contextes. Cela démontre une acclimatation de longue date des humains dépeints dans le film à la présence de robots similaires, mais aussi une conscience, de sa part, du ou des rôles qui lui sont implicitement conférés dans un groupe.

Robot aspirateur. R2D2 n'est bien entendu qu'un exemple, qui plus est dans un monde totalement imaginaire, de robot social. Cependant, force est de reconnaître qu'il possède bon nombre des caractéristiques dont il conviendrait de doter les robots de service ou de loisir si nous voulons, un jour, que ceux-ci puissent opérer de façon naturelle et quotidienne dans notre environnement et soient, en dépit de leur autonomie, acceptés et appréciés par leurs utilisateurs de la même façon que ceux-ci les acceptent - et les apprécient - dans une oeuvre de fiction.

Dans le monde beaucoup plus terre à terre de l'industrie, l'adaptation de robots complètement asservis est réalisée a priori .Ils sont capables, une fois placés dans le bon environnement, de fonctionner en complète autarcie sans avoir à percevoir autre chose que ce qui concerne la tâche pour laquelle ils sont conçus. Quant aux robots dits autonomes, prévus pour des missions spécifiques dans des environnements non socialisés exploration, intervention dans des environnements lointains ou hostiles à l'homme, etc., ils sont, eux, conçus de manière à éviter d'avoir à appréhender toute la complexité de leur environnement. Leur comportement repose sur la perception de caractéristiques environnementales dont les propriétés intervalles de valeurs, limites de variation, fréquences de changement sont considérées comme connues de façon fiable. La complexité intrinsèque de leur milieu importe peu ; seule compte la complexité de ce qu'ils perçoivent de ce milieu. Aux yeux de Rocky, la complexité de la planète Mars est très faible : absence ou présence d'obstacles, absence ou présence de roches à filmer, absence ou présence d'une base.

Mais dès lors que des interactions répétées avec des humains, non prévues à l'avance, sont, soit nécessaires, soit inévitables dans le fonctionnement du robot, ces modèles ne sont plus valables1. Comment serait accepté un robot aspirateur autonome qui nécessiterait que les habitations soient conçues pour lui permettre de fonctionner correctement interdiction de déplacer les meubles, circuit immuable, murs peints de certaines couleurs, évacuation des lieux à chaque nettoyage, etc., ou qui ne tiendrait compte de rien d'autre que de la présence ou absence de poussière et ne se mette à fonctionner quand bon lui semble ? L'être humain a ceci de particulier qu'il est, lui, vraiment autonome donc difficilement contrôlable au même titre qu'un objet, que son comportement est souvent imprévisible à moins de percer toute la richesse de ses intentions et qu'il est peu enclin à se montrer coopératif, surtout avec des systèmes technologiques capables de bouleverser ses habitudes. Dans le même temps, cependant, l'être humain constitue une ressource d'une richesse incroyable qui, si elle est correctement exploitée par le robot, peut lui permettre de progresser de manière significative dans la réalisation de ses tâches.

Robots guides. La mise sur le marché, il y a deux ans, du robot Aibo de Sony a ouvert une ère nouvelle, en permettant, par le biais d'un instrument de loisir, de créer des situations de cohabitation entre hommes et robots qu'il est devenu possible d'étudier sur le long terme, tant sur le plan psychologique que sociologique lire l'article de Frédéric Kaplan p. 84. En revanche, le champ d'expérimentation ainsi ouvert reste limité. Aibo n'est déployé, en majorité, que dans des cellules familiales et pas des collectivités plus importantes ou plus variées dont le niveau socioprofessionnel est élevé et qui sont déjà pour la plupart parfaitement acclimatées à la sphère « technologique » sous toutes ses formes.

Plus intéressante est la mise en place des robots guides de musée2 imaginés par l'Institut de robotique de l'université Carnegie Mellon, aux Etats-Unis. Les robots Sage, puis Rhino et Minerva, ont été brièvement expérimentés en 1998 et 1999 respectivement dans le Dinosaur Hall du Carnegie Museum d'Histoire naturelle, au Deutsche Museum de Bonn et au Smithsonian's National Museum of American History. Même si elles ont été limitées dans le temps une ou deux semaines, ces expériences se sont révélées très riches d'enseignements sur le degré d'attention des usagers, leurs attentes, leur curiosité, leur interprétation du fonctionnement du robot, etc. et ont permis de donner naissance à d'autres travaux plus ambitieux, comme NurseBot, aussi à Carnegie Mellon, conçu pour assister les personnes âgées dans leurs tâches quotidiennes3. Dans tous ces travaux, cependant, les résultats obtenus sur l'acclimatation sont quelque peu dénaturés par l'emploi d'un seul et unique robot opérant au sein de groupes humains pour une période de temps assez courte. Il est vraisemblable, dans la perspective de la robotique de service, par exemple, que les usagers seront quotidiennement en contact avec plusieurs robots, qui seront eux-mêmes, sans doute, amenés à interagir les uns avec les autres.

Le projet MICRobES*4, que nous avons mis en place dans notre laboratoire, s'inscrit précisément dans cette perspective. Six droïdes se promènent librement dans les locaux du laboratoire, qui abrite bien d'autres spécialistes que les roboticiens impliqués dans le projet. Ils sont capables de recharger eux-mêmes leur batterie, de se localiser dans l'environnement et d'éviter les obstacles vivants et non vivants, ainsi que les endroits dangereux ascenseurs.... L'expérience a pour objet d'étudier l'évolution des relations hommes/robots dans cet espace partagé. Des sociologues du centre de sociologie de l'innovation de l'Ecole des mines CSI interrogent régulièrement les chercheurs du laboratoire, pour voir comment ils réagissent, à la longue plusieurs mois en présence de cette colonie du troisième type. Plusieurs questions, essentielles au développement d'une robotique sociale, sont abordées dans le cadre de ce projet : une personne réagit-elle de la même manière en présence d'un robot solitaire et d'un groupe de robots ? L'attribution de sens et d'intentionnalité se déroule-t-elle de la même façon ? L'acclimatation ou l'habituation à la présence des robots en est-elle facilitée ? Une grande attention est portée au détail des interactions entre hommes et robots, notamment par le biais de la classification des attitudes qu'adoptent les personnes concernées en présence des robots et sur l'évolution de ces attitudes dans le temps certains ferment leur porte dès qu'ils entendent un droïde arriver....

Concevoir des robots sociaux met ainsi profondément en cause l'orientation purement technologique, presque scientiste, qui est celle de la robotique depuis ses origines. Il n'est, en effet, pas interdit de penser que les problèmes de perception, d'action, de modélisation de l'environnement ou de planification qui se posent à des robots asservis ou complètement autonomes pourront être résolus par le développement incrémental de technologies toujours plus puissantes et robustes. En revanche, il est peu vraisemblable que ces technologies « internes » à la robotique permettent d'aborder facilement des problèmes d'interaction, d'apprentissage, d'acclimatation dont la solution repose, en partie, sur une compréhension fine et une utilisation contrôlée de la façon dont les êtres humains se comportent en présence d'artefacts autonomes ou semi-autonomes. Certes, l'aspect technologique sera toujours nécessaire. Il ne serait pas possible de parler de robots sociaux aujourd'hui sans les avancées spectaculaires réalisées ces dernières années dans le domaine de l'autonomie énergétique, des capteurs, des effecteurs, ou des interfaces d'interaction5,6. Mais, pas plus qu'il n'est possible d'imaginer le développement de robots démineurs dotés de « nez chimiques » sans le concours de chimistes, il ne paraît vraisemblable d'envisager le développement de robots sociaux sans le concours des sciences humaines concernées : sociologie, anthropologie, psychologie, ou éthologie.

Révolution. En définitive, les recherches actuellement menées dans ce domaine consistent à tenter de remettre systématiquement l' homme dans la boucle 7 , c'est-à-dire, par exemple, à considérer que, quel que soit le problème posé au robot, il ne possédera jamais, s'il fonctionne en présence d'êtres humains, qu'une partie de sa solution, l'autre étant entre les mains de ses utilisateurs et échappant, de fait, en partie à ses concepteurs. Cette perspective se traduit, sous ses airs anodins, par une véritable révolution en robotique : l'homme n'est plus un « obstacle » mobile et imprévisible, qu'il convient, au mieux, d'ignorer ou d'éviter, au pire de contrôler par tous les moyens adéquats, mais une ressource qu'il va être nécessaire d'apprivoiser au même titre que les autres ressources « naturelles » un substrat physique pour se déplacer, une station pour se recharger, etc. dont dispose le robot. A la différence près qu'il ne s'agit pas d'une ressource passive et que l'exploiter nous renverra forcément à des questions fondamentales sur notre cognition, individuelle et sociale, auxquelles nous ne savons pas forcément répondre aujourd'hui.

Par Alexis Drogoul et Jean-Daniel Zucker

 

DOCUMENT       larecherche.fr       LIEN

 
 
 
 

LES ROBOTS ET ...DARWIN

 

Darwin revisité par la sélection artificielle


spécial robots - par Dario Floreano dans mensuel n°350 daté février 2002 à la page 24 (3062 mots)
Un robot peut-il évoluer de manière autonome ? Tel est le champ d'étude de la robotique évolutionniste, qui s'attache à mettre au point des robots capables de s'adapter à leur environnement. Aujourd'hui, les performances de certains types de réseaux de neurones artificiels résultent effectivement d'un processus de sélection darwinien.

En dépit des progrès immenses que la robotique a connus au XXe siècle grâce aux développements de l'électronique, de l'informatique et des capteurs artificiels, la plupart des robots actuellement en fonction dans les usines ne diffèrent pas beaucoup des anciens automates. Ils sont toujours programmés pour accomplir exactement des séries d'actions prédéfinies. Peut-on dire de ces machines qu'elles sont intelligentes ? Pas vraiment : elles se bornent à traduire l'intelligence des ingénieurs qui les ont conçues et programmées. Dans son passionnant petit ouvrage intitulé Véhicules. Expériences de psychologie de synthèse , le neurophysiologiste Valentino Braitenberg envisageait a contrario , dès 1984, la possibilité d'aboutir à des robots « intelligents » par l'intermédiaire d'un processus évolutionniste voir l'encadré : « A l'origine de la robotique révolutionnaire ». Il voulait ainsi appliquer à la robotique l'idée de Darwin selon laquelle l'évolution de la vie biologique sur Terre résulte d'un processus de copie sélective avec erreurs aléatoires, sans participation d'un créateur conscient. C'est ce concept de robotique évolutionniste que certains chercheurs ingénieurs, biologistes et spécialistes des sciences cognitives tentent depuis quelques années de développer, en essayant de mettre au point des formes de vie robotique capables de s'adapter de manière autonome à leur environnement.

Au printemps 1994, deux équipes de chercheurs -la nôtre à l'Ecole polytechnique fédérale de Lausanne EPFL et celle dirigée par Inman Harvey à l'université du Sussex, à Brighton1 - ont réalisé les premiers robots ayant développé, par simulation mais sans intervention humaine, divers types de circuits neuronaux leur permettant de se déplacer de manière autonome dans des environnements réels. A la base de ces réalisations, deux postulats communs. Premièrement, la conception planifiée d'un robot ne permet pas de faire face à la complexité des interactions entre le robot et son environnement physique, ni d'élaborer les circuits neuronaux nécessaires à ces interactions. Au lieu de tenter de formaliser ces interactions pour ensuite structurer le cerveau du robot, pourquoi ne pas les laisser, sous la pression de certains critères de sélection, guider elles-mêmes l'évolution de ce dernier ? Deuxièmement, le processus évolutionniste appliqué aux robots est susceptible d'aboutir à des circuits neuronaux beaucoup plus simples que ceux en général dessinés par les ingénieurs appliquant des méthodes d'analyse formelle. La nature n'est-elle pas riche en exemples de circuits nerveux simples et pourtant responsables de comportements apparemment très complexes ?

Réseaux de neurones. Pour expérimenter l'évolution sans intervention humaine, notre équipe de l'EPFL a créé un robot mobile miniature baptisé Khepera à présent distribué par la société K-Team SA. Doté d'un corps circulaire de 6 centimètres de diamètre pour un poids de 70 grammes, il est équipé de deux roues et de huit capteurs lumineux simples répartis autour de son corps six à l'avant et deux à l'arrière fig. 1. Khepera est relié à un ordinateur par l'intermédiaire d'un câble suspendu au plafond et de contacteurs rotatifs spécialement conçus pour assurer sans rupture son alimentation électrique. L'enregistrement permanent de tous les mouvements du robot et de la structure de ses circuits neuronaux au cours de l'évolution permet d'analyser a posteriori le processus évolutionniste.

Par circuits neuronaux, il faut bien sûr comprendre « réseaux de neurones artificiels ». Ces derniers sont soit matérialisés sous forme de composants électroniques, soit, comme c'est le cas ici, simulés par informatique. Comme dans le monde du vivant, ces circuits sont composés d'un certain nombre de neurones interconnectés de façons diverses. Ce sont du reste ce nombre et la nature des interconnexions qui définissent la structure d'un circuit neuronal. L'analogie ne s'arrête pas là, puisque chaque neurone reçoit des signaux des neurones voisins via la propagation unidirectionnelle des signaux en question dans ses dendrites, et envoie ensuite son propre signal à d'autres neurones, via son unique axone.

Certains neurones sont activateurs - ils émettent un signal positif - tandis que d'autres sont inhibiteurs - ils émettent un signal négatif. Quelle que soit sa nature, ce signal de sortie est construit par comparaison entre la somme de signaux reçus par un neurone, et la valeur seuil qui a été attribuée à ce dernier pour qu'il réponde. Enfin, un « poids » est attribué à chaque point de connexion synapse entre un axone et une dendrite, poids qui selon les cas amplifie ou diminue le signal transitant à cet endroit. Le nombre et le type de neurones valeur seuil, nature du signal engendré, le profil des connexions et le poids attribué à chaque synapse sont codés informatiquement dans ce que l'on appelle le chromosome du robot - seconde analogie avec le monde du vivant. Ce chromosome est une chaîne de bits se succédant en séquences dénommées « gènes », dont chacune représente une propriété du circuit de neurones. Le premier gène, composé, par exemple, de 8 bits, code la présence et la connectivité d'un neurone donné dans le circuit. Le second gène, composé, par exemple, de 20 bits, code le poids attribué à chacune des connexions synaptiques au niveau des dendrites de ce même neurone. C'est l'ordinateur lui-même qui produit, de façon aléatoire, une première population de ces chromosomes artificiels. Chacun d'eux sert ensuite à programmer le réseau de neurones qui est relié, en entrée, aux capteurs sensoriels du robot, et en sortie, à ses roues, de façon à en gérer la vitesse de rotation. Chaque configuration est ensuite testée sur le robot pendant quelques minutes, au cours desquelles l'ordinateur évalue ses performances.

Sélection et reproduction. Dans une première expérience2, nous avons voulu développer la capacité du robot à avancer en ligne droite et à éviter les obstacles. Nous avons donc demandé à l'ordinateur de sélectionner, pour reproduction, les individus dont les roues tournaient à peu près dans la même direction mouvement en ligne droite et dont les capteurs étaient peu activés ce qui reflète l'éloignement du robot par rapport aux obstacles. Ces paramètres sont du reste les seules données injectées par la main humaine : tout le processus ultérieur est autogéré par un algorithme. Après avoir testé le chromosome de chaque individu de la population initiale sur un robot physique, les chromosomes les plus performants sont sélectionnés, puis reproduits de façon à obtenir une population de même taille que la population initiale. Ces copies sont alors, au hasard, agencées par paires : le chromosome de l'individu 8 est par exemple apparié au chromosome de l'individu 67. Un point est aléatoirement fixé le long de ces deux chromosomes, autour duquel ont lieu des échanges de séquence, sorte d'équivalent des mutations par recombinaison du monde vivant. De plus, la valeur des bits de chaque chromosome est basculée de 0 à 1 ou inversement suivant une probabilité très faible, créant ainsi des mutations ponctuelles. On obtient alors une nouvelle génération de chromosomes, à son tour testée et reproduite plusieurs fois fig. 2.

Premiers cas d'adaptation. Au bout de 50 générations ce qui correspondait à environ deux jours d'activité en continu, nous avons observé un robot capable de faire le tour complet du labyrinthe-test sans jamais heurter un obstacle. Le circuit obtenu par ce processus d'évolution s'est révélé être relativement simple, mais malgré tout plus complexe que les circuits conçus à la main pour accomplir des tâches similai-res : il mettait en effet à profit des connexions non linéaires entre les neurones moteurs pour empêcher le robot de se retrouver bloqué dans les coins. De plus, ce Khepera parfaitement circulaire comme tous ses confrères se déplaçait toujours dans la direction correspondant au plus grand nombre de capteurs. Pourtant, les premières générations étaient capables de se déplacer dans les deux sens. Mais les individus roulant avec la majeure partie des capteurs à l'arrière ont eu tendance à rester bloqués dans des coins parce qu'ils ne les percevaient pas bien : ils ont donc disparu de la population. Ce résultat a représenté un premier cas d'adaptation d'un réseau de neurones artificiels à la morphologie d'un robot dans un environnement donné.

Etait-il possible, par la voie de l'évolution, de développer des aptitudes cognitives plus complexes en exposant simplement les robots à des environnements plus stimulants ? Pour tenter de répondre à cette question, nous avons mis Khepera dans une enceinte où un chargeur de batterie est placé dans un coin, sous une source lumineuse2 ; nous l'avons ensuite laissé évoluer jusqu'à déchargement de ses batteries. Pour accélérer l'obtention des résultats du processus évolutif, nous avons procédé par simulation tant des batteries et de leur durée de charge seulement 20 secondes, que du chargeur, figuré quant à lui par une zone peinte en noir. Lorsque le robot y passait, ses batteries se rechargeaient automatiquement. Le critère d'adaptation était le même que dans l'expérience de navigation en ligne droite : rester en mouvement le plus possible tout en évitant les obstacles. Les robots qui parvenaient à trouver le chargeur de batterie vivaient plus longtemps et accumulaient donc davantage de capacités adaptatives. Au départ, la « rencontre » avec le chargeur de batterie découlait du hasard. Mais au bout de 240 générations, soit une semaine d'activité en continu, nous avons trouvé un robot capable de rejoindre le poste de charge deux secondes seulement avant le déchargement complet de ses batteries, puis de retourner immédiatement vers la partie centrale de l'enceinte, éloignée des parois. En analysant l'activité du circuit neuronal de ce robot lors de ses déplacements, nous avons observé que l'un de ses neurones, et un seul, présentait une caractéristique très particulière : son activation dépendait de la position et de l'orientation du robot dans l'environnement. Il ne dépendait pas, en revanche, du niveau de charge de la batterie. Autrement dit, ce neurone codait une représentation spatiale de l'environnement ce que les psychologues appellent parfois une « carte cognitive », tout comme certains neurones découverts par les neurophysiologistes dans le cerveau des rats qui explorent leur milieu. Dans un cas comme dans l'autre, il est tout aussi difficile d'expliquer pourquoi une telle évolution a eu lieu...

Encouragés par ces expériences, nous avons décidé de rendre l'environnement encore plus complexe en faisant évoluer simultanément deux robots en compétition l'un avec l'autre. Le groupe du Sussex avait déjà commencé à étudier, en simulation, la coévolution de prédateurs et de proies afin de voir s'il apparaissait dans les deux espèces des comportements de plus en plus complexes. Il avait ainsi montré que cette coévolution de deux populations en compétition modifie massivement le processus d'évolution, mais n'avait pu observer de résultats vraiment marquants quant au stade évolutif final. De notre côté, nous avons choisi de travailler en grandeur nature sur des robots morphologiquement différents3 : le robot prédateur est doté d'un champ visuel de 36 degrés et le robot proie, s'il est seulement muni de capteurs simples capables de déceler un objet distant de 2 centimètres, peut se déplacer deux fois plus vite que le prédateur. Ces robots sont mis à « coévoluer » dans une enceinte carrée, chaque paire proie-prédateur se déplaçant librement pendant deux minutes ou moins si le prédateur parvient à atteindre son but, le critère de sélection étant le délai précédant la collision fig. 1. Les résultats sont très surprenants. Au bout de 20 générations, le prédateur a acquis la capacité de rechercher la proie et de la poursuivre pendant que celle-ci s'échappe en se déplaçant dans toute l'enceinte. Cependant, comme la proie est plus rapide que lui, cette stratégie n'est pas toujours payante. Après 25 générations supplémentaires, il repère la proie à distance, puis finit par l'attaquer en anticipant sur sa trajectoire. Dès lors, la proie se met à se déplacer si vite le long des parois que le prédateur la manque souvent et va s'écraser sur une paroi. Encore 25 générations plus tard, le prédateur a mis au point la « stratégie de l'araignée ». Il se déplace lentement jusqu'à une paroi et attend la proie, qui bouge trop vite pour déceler à temps le prédateur et donc pour l'éviter !

Cependant, lorsque nous avons laissé coévoluer les deux espèces de robots encore plus longtemps, nous avons constaté qu'elles redécouvraient de vieilles stratégies qui se révélaient efficaces contre celles utilisées au même moment par l'opposant. Ce constat n'est pas surprenant : étant donné la simplicité de l'environnement, le nombre des stratégies possibles pour les deux espèces de robots est en effet limité. Même dans la nature, on observe que des hôtes et des parasites évoluant ensemble par ex-emple, des plantes et des insectes recyclent au fil des générations de vieilles stratégies. Stefano Nolfi, qui a travaillé avec nous sur ces expériences, a remarqué qu'en rendant l'environnement plus complexe par exemple, en ajoutant des objets dans l'enceinte, la diversité des stratégies mises au point par les robots était beaucoup plus grande et qu'il fallait plus longtemps avant que les deux espèces en reviennent à des stratégies anciennes. Des équipes de plus en plus nombreuses travaillent aujourd'hui sur les systèmes de coévolution, et je pense que c'est une voie très prometteuse d'une part pour développer l'intelligence du comportement chez les robots et d'autre part pour comprendre comment les espèces biologiques ont évolué jusqu'à leur stade actuel ou ont disparu au cours de l'histoire de la Terre.

Autres supports d'évolution. Dans les expériences décrites jusqu'ici, le processus d'évolution s'exerçait sur les caractéristiques du logiciel de commande du robot. Mais de fait, on peut envisager d'appliquer aux circuits électroniques eux-mêmes le processus évolutionniste permettant d'obtenir des comportements intéressants. Malheureusement, les électroniciens ont plutôt tendance à éviter les circuits trop complexes, fortement non linéaires et au comportement difficilement prévisible, alors que c'est justement de ce type de circuits dont une machine capable de comportements autonomes aurait sans doute besoin !

A l'université du Sussex, Adrian Thompson a développé des systèmes affranchis des contraintes usuelles de structure4. Il a utilisé un nouveau type de circuit électronique, le FPGA Field Programmable Gate Array, dont l'architecture des connexions internes peut être entièrement modifiée en quelques nanosecondes, en jouant sur le voltage traversant le circuit. La configuration d'un FPGA étant une chaîne binaire de 0 et de 1, A. Thompson a considéré cette chaîne comme un chromosome et l'a fait évoluer pour diverses applications, telles la discrimination des sons et même la commande de robots. Les circuits obtenus grâce à ce processus d'évolution demandent cent fois moins de composants que les circuits électroniques classiques conçus pour des tâches similaires, et font intervenir de nouveaux types de connexions. De plus, ces circuits sont sensibles à certains paramètres environnementaux tels que la température. Cette caractéristique, défavorable en électronique classique, constitue par contre un atout dans une optique évolutionniste, puisque cette sensibilité est une caractéristique de tous les organismes vivants. Le domaine de l'électronique évolutionniste était né et plusieurs chercheurs à travers le monde utilisent aujourd'hui l'évolution artificielle pour découvrir de nouveaux types de circuits, ou laissent les circuits évoluer vers de nouvelles conditions de fonctionnement.

Nous avons, jusqu'à présent, essentiellement traité de l'évolution du « système nerveux » des robots. Or, dans la nature, la forme du corps et la configuration sensori-motrice sont, elles aussi, soumises à évolution. Est-il possible que la répartition des capteurs d'un robot s'adapte à un circuit neuronal fixe et relativement simple ? L'équipe de Rolf Pfeifer a créé, au laboratoire d'intelligence artificielle de Zurich, le robot Eyebot dont l'oeil peut changer de configuration5. Le système visuel d'Eyebot, analogue dans son principe à celui de la mouche, est composé de plusieurs photorécepteurs directionnels dont l'angle peut être modifié par des moteurs fig. 3. Une fois Eyebot implémenté avec un circuit neuronal fixe et simple, les auteurs ont observé l'évolution de la position relative de ses capteurs dans une situation où le critère de sélection était de se maintenir à une distance donnée d'un obstacle. Les résultats expérimentaux ont confirmé les prédictions théoriques : l'évolution a conduit à une distribution des photorécepteurs plus dense vers l'avant du robot que sur les côtés. Les enseignements de cette expérience sont très importants : d'une part, la forme du corps joue un rôle majeur dans le comportement d'un système autonome, et il faut lui permettre d'évoluer en même temps que d'autres caractéristique du système ; d'autre part, une morphologie adaptée à l'environnement et aux comportements du robot permet d'alléger la complexité des calculs.

L'idée de faire évoluer simultanément la morphologie et les circuits neuronaux d'un robot autonome avait, elle, déjà été explorée en 1994 par Karl Sims, par simulation. Il n'y a pas longtemps qu'elle a été concrétisée sous forme matérielle6. Jordan Pollack et son équipe de Brandeis University ont fait coévoluer la morphologie et le circuit de neurones moteurs de robots composés de tiges de longueur variable, dont le critère d'adaptation est d'avancer le plus loin possible. Les chromosomes de ces robots contiennent les paramètres de commande d'une « imprimante » en trois dimensions, laquelle fabrique des corps de robots à partir d'un matériau thermoplastique. Ces derniers sont alors équipés de moteurs, et on les laisse évoluer librement tout en mesurant leur taux d'adaptation. L'évolution artificielle a produit des formes extérieures souvent innovantes qui évoquent des morphologies biologiques comme celles de poissons fig. 3.

Conditions d'amélioration. Quels que soient les progrès décrits ci-dessus, ils ne valent pourtant que dans un environnement assez simple. Si ce dernier ou les aptitudes requises pour y évoluer sont trop complexes, de telle sorte que tous les individus de la première génération ont une adaptation nulle, l'évolution ne peut pas sélectionner les bons éléments et donc accomplir le moindre progrès. L'une des solutions possibles consisterait à travailler avec des environnements et des critères d'adaptation initialement simples, mais se complexifiant au fil du temps. Cette solution suppose toutefois de consacrer davantage d'efforts à la mise au point de méthodes incrémentales d'évolution par étapes, méthodes qui seraient, dans une certaine mesure, capables de préserver les premières solutions découvertes et de bâtir à partir d'elles. Cela implique que nous sachions déterminer les paramètres initiaux convenables et le codage génétique à partir duquel l'évolution artificielle pourra produire des structures plus complexes. Un autre défi est, on l'a entrevu, celui de la fabrication matérielle. Malgré les résultats encourageants obtenus dans le domaine de l'évolution des circuits électroniques, nous sommes nombreux à considérer qu'il faut repenser radicalement le type de composants sur lesquels faire agir l'évolution artificielle. Dans cette optique, un renforcement des efforts de développement de circuits auto-assembleurs, qui imposent moins de contraintes au système en évolution, pourrait accélérer les progrès de la robotique évolutionniste.

Par Dario Floreano

 

DOCUMENT    larecherche.fr     LIEN

 
 
 
 

LES PARTICULES ÉLÉMENTAIRES

 


Les particules élémentaires


 dans mensuel n°306 daté février 1998 à la page 92 (3073 mots)
La quête de l'élémentaire occupe philosophes et hommes de science depuis plus de... vingt-cinq siècles ! Leucippe de Milet est le premier, en Occident, à définir l'atome comme la particule la plus élémentaire. Insécables car très petits, durs et incompressibles, les atomes de Leucippe, puis ceux de Démocrite, diffèrent par leur forme, leur arrangement et sont animés d'un mouvement continu, éternel et désordonné. Ils composent toutes choses, y compris l'âme. Epicure leur rajoutera une autre propriété, une sorte de pesanteur. Leur mouvement est, selon lui, régulier et dirigé vers le bas mais peut se trouver légèrement dévié. Cette théorie atomiste sera vivement combattue au Moyen Age par la tradition aristotélicienne qui préfère une vision du monde en quatre qualités primordiales le chaud, le froid, l'humide et le sec et une substance particulière omniprésente, l' aither . En Occident, la théorie atomiste gagne du terrain au cours des siècles. La publication en 1913 de l'ouvrage Les Atomes par Jean Perrin marquera finalement le triomphe de la théorie atomisteI.

La reconnaissance de la structure intime de l'atome démarre avec la découverte de l'électron, découverte qui fut l'aboutissement de travaux menés entre 1890 et 1900 en Angleterre, en Irlande, en Allemagne, en Hollande et en FranceII. En 1905, l'année où il conçoit la relativité restreinte, Albert Einstein propose de considérer la lumière comme un flux de particules élémentaires, de « quanta d'énergie localisés en des points de l'espace » , qui ont été appelés plus tard photons. L'existence de ces particules sera confirmée en 1923, par l'Américain Arthur Holly Compton*. Dix années plus tôt en 1911, une équipe de l'université de Manchester dirigée par Lord Rutherford démontre, à partir de données expérimentales le bombardement de feuilles d'or avec des atomes d'hélium chargés positivement que le centre des atomes est occupé par un noyau de très petite taille chargé positivement. En 1920, Rutherford baptise la charge positive du noyau proton . L'idée admise, à cette époque, est que le noyau contient les deux particules élémentaires, proton et électron. Mais douze années plus tard, James Chadwick, du laboratoire Cavendish à Cambridge, découvre à l'intérieur du noyau une particule électriquement neutre. Il la nomme neutron, celui-ci accède provisoirement au statut de particule élémentaire. L'idée qu'une sous-structure puisse exister à l'intérieur est venue ensuite naturellement... En 1964, Murray Gell-Mann et Georges Zweig élaboraient, de façon indépendante, le concept de quarks, constituants élémentaires des protons et des neutrons. Leur mise en évidence eut lieu dans les années 1970 aux Etats-Unis.

Une particule élémentaire ne peut se représenter - comme on le trouve encore souvent - par une petite bille. Entendons-nous : cette représentation naïve n'est pas incorrecte lorsqu'on se place dans le cadre de la mécanique classique ; la matière macroscopique n'est-elle pas symbolisée par les physiciens comme un ensemble de points matériels, de lieux où se concentre la masse ? En électromagnétisme, les mouvements de ces points peuvent être décrits grâce au concept de champ introduit par Faraday au milieu du XIXe siècle. Structure infinie étendue à l'ensemble de l'espace et du temps, le champ est devenu au fil des années un concept fondamental pour comprendre la matière. Mais il pose un problème. Comment, en effet, concilier ce concept, fondé sur des équations qui reposent sur la continuité, et la notion de particule, par essence discontinue ? La théorie quantique des champs introduite dans les années 1930 résout l'antagonisme. Alors que la mécanique classique va observer un morceau de matière et se poser les questions : dans quel état est-il ? quelle est sa vitesse, son énergie ? La théorie quantique des champs renverse le point de vue en disant : voici tous les états qui peuvent être occupés ou pas par des particules dans le cadre d'une interaction, comment sont-ils occupés ? Les champs quantiques sont les opérateurs qui remplissent ou vident ces états. Remplir c'est créer une particule, vider c'est l'annihiler. La particule n'est donc plus un point matériel mais un échantillon, un digit de champ quantique défini pour un certain type d'interaction. La comparaison avec l'informatique n'est pas gratuite : la particule élémentaire est en quelque sorte, un 1 ou un 0 dans un programme informatique. Les échantillons de champ peuvent être des constituants de la matière, les fermions*, ou bien être des vecteurs d'interactions, les bosons*. Bosons et fermions ont des propriétés très différentes. D'abord, le moment cinétique* intrinsèque ou spin est nul ou entier pour les bosons et demi-entier pour les fermions. Ensuite les fermions sont impénétrables. Lorsqu'il y en a un quelque part, on ne peut pas en rajouter un autre au même endroit. La matière ne se superpose pas. Les bosons, au contraire, peuvent tous se trouver dans le même état, au même endroit. Le photon est un boson : on superpose des rayons lumineux.Le théoricien et l'expérimentateur ne voient pas et ne représentent pas la particule de la même façon. Une particule étant pour le théoricien un digit de champ, le concept premier est donc, pour lui, le champ et non la particule. La nature des champs quantiques est prédéterminée par les quatre interactions fondamentales et par les symétries qu'elles respectent voir tableau ci-dessous.
Que signifie pour une interaction respecter une symétrie ? Prenons l'exemple de l'électromagnétisme. Pour décrire l'interaction électromagnétique, le physicien utilise la notion de potentiel*. Une dérivation* par rapport aux coordonnées de l'espace lui permet de passer du potentiel au champ. De la même façon qu'une famille infinie de droites parallèles possède la même pente, il existe une infinité de potentiels qui donnent le même champ.
Tous ces potentiels sont identiques à une « origine près » : si l'on transforme un potentiel en un autre, les équations n'en sont pas affectées. En mécanique quantique, les physiciens utilisent le terme d'invariance ou symétrie de jauge* pour décrire ce type de transformation. Or, il se trouve - sans que nous comprenions vraiment pourquoi - que les quatre interactions fondamentales et les équations qui les décrivent respectent des symétries de ce type.
Ceci a, bien sûr, des répercussions sur les champs quantiques associés aux interactions et donc sur les propriétés des particules, les digits de champs. Ainsi, quand un théoricien pense particules, il pense symétries, interactions, champs.
Dans les équations, il symbolise les particules par des potentiels, fonctions de plusieurs paramètres comme le temps t ou la position x, y, z. Mais l'expérimentateur, lui, voit les particules bien différemment.
Une particule est, à ses yeux, une signature dans un certain type de détecteur, autrement dit une trace ou un ensemble de traces. Il la désigne par des lettres u, Z, t, n, e ...et non par des potentiels ou des champs quantiques.Parmi les particules connues, certaines sont présentes dans la nature, comme l'électron, particule constitutive des atomes de matière, ou comme le neutrino, particule neutre présente dans les rayons cosmiques*. D'autres n'auraient existé que dans les tout premiers instants de l'Univers et ne peuvent être détectées qu'auprès des grands accélérateurs ou collisionneurs. Pourquoi ? Imaginons, que nous voulions découvrir dans une structure, comme le proton, une sous-structure plus petite. Une première idée est de sonder cette structure en envoyant une ou des particules sondes sur elle. Ces particules sondes ont, selon la dualité onde-corpuscule* établie par Louis de Broglie en 1923, des longueurs d'onde associées. Or, nous savons qu'un phénomène ondulatoire n'interagit qu'avec des objets de dimension supérieure à sa longueur d'onde un nageur ne perturbe pas la houle, laquelle se trouve en revanche affectée par la marche d'un paquebot.... Pour sonder des objets petits, il faut donc envoyer sur eux des particules sondes de très courte longueur d'onde, ce qui signifie aussi très énergiques. Les accélérateurs cible fixe ou les collisionneurs cible en mouvement sont construits sur ce principe. Détaillons ce qui se passe dans un collisionneur où deux faisceaux de particules de haute énergie circulent en sens opposés. La collision entre deux particules des deux faisceaux produit un choc d'où émergent d'autres particules en vertu du principe d'équivalence entre masse et énergie, le fameux E = mc2, une des conséquences de la théorie de la relativité restreinte élaborée en 1905 par Albert Einstein.
Plus le choc est énergique, plus les particules créées sont massives... ce qui ne veut pas dire qu'elles sont plus grosses, au contraire ! Plus elles sont massives, au sens énergétique du terme, plus leurs dimensions, ou encore leur longueur d'onde associée est petite... La durée de vie des particules est si brève, quelque 10­20 s, qu'aucune caméra, aucun microscope n'est capable d'observer directement le résultat de la collision. Ce que les expérimentateurs détectent ce sont les produits stables de leur désintégration. Pour connaître leur position et leur énergie, ils placent autour du point de collision plusieurs détecteurs qui forment une structure géante en oignon voir schéma.
Ces dispositifs sophistiqués ont une faiblesse : ils ne permettent pas d'arrêter les particules non chargées et n'interragissant que faiblement, comme les neutrinos.Dans la théorie de la relativité restreinte, la masse est reliée à l'énergie et à la quantité de mouvement* pÆ de la particule de la façon suivante : E2 ­ p2=m2 en supposant c = 1, c vitesse de la lumière dans le vide. Dans cette équation m est la masse invariante de la particule, m = E si pÆ = oÆ ; m est donc la masse au repos. Si la masse de la particule est nulle, on a E = p, autrement dit une particule de masse nulle est une particule qui va à la vitesse de la lumière quel que que soit le référen- tiel.
Conclusion : une particule de masse nulle est une particule qui n'est jamais au repos !Elles existent puisqu'on les a observées ! D'abord dans le rayonnement cosmique, puis dans les accéléra- teurs et les collisionneurs. Mais l'existence des antiparticules avait été suppo- sée avant qu'on puisse les observer, à la fin des années 1920 par le physicien britannique Paul Dirac. Pour réconcilier la mécanique quantique et la théorie de la relativité, il imagina une particule d'énergie positive, de masse égale à celle de l'électron, mais de charge électrique opposée. L'anti-électron positon était né. Ce dédoublement purement théorique du monde en « particules-antiparticules », autrement dit en « matière- antimatière » fut expérimentalement confirmé dès 1932. Aujourd'hui, toutes les anti-particules des particules élémentaires connues ont été découvertes.
Une antiparticule possède la même masse, le même spin que la particule du même nom mais des charges opposées - « charges » au pluriel. Toute particule ou antiparticule porte, en effet, un certain nombre de charges charge électrique, charge de couleur, nombre baryonique, charge de saveur.... Ces nombres sont des sortes d'étiquettes qui définissent le comportement de la particule ou de l'antiparticule dans les interactions.
L'une des grandes énigmes de la physique actuelle est le déficit d'antimatière mesuré dans l'Univers. Si la matière et l'antimatière ont des propriétés symétriques, pourquoi la nature aurait-elle préféré la première à la seconde ?
En 1967, le physicien russe Andrei Sakharov a proposé une théorie pour expliquer cette dissymétrie.Deux types de particules existent à l'intérieur du groupe des fermions voir p. 95 : d'un côté les leptons, qui ne participent pas à l'interaction forte, de l'autre les quarks, de différentes saveurs et de différentes couleurs qui participent à toutes les interactions. Les charges de saveur six au total et de couleur trois au total des quarks déterminent leur comportement vis-à-vis respectivement de l'interaction faible et forte. Les bosons, vecteurs des quatre interactions fondamentales, sont le photon pour l'interaction électromagnétique, les gluons pour l'interaction forte qui lient les quarks entre eux, les bosons W+, W­ et Zo, porteurs de l'interaction faible, enfin le graviton, le boson de la gravitation. Fermions et bosons ont été regroupés en trois familles dans le modèle standard, cadre conceptuel permettant de prédire tous les phénomènes mettant en jeu les interactions fondamentales autre que la gravitation*. Curieusement, les deux dernières familles peuvent être vues comme des répliques de la première à un détail près : leur particule ne se distingue des particules de la famille n° 1 que par leur masse ! Un muon est un autre électron sauf qu'il est un peu plus lourd, un tauon est un muon encore plus lourd. C'est un peu comme si la nature avait bégayé trois fois... Les physiciens l'admettent : le modèle standard qu'ils ont construit aurait très bien pu fonctionner avec une seule famille de particules. Pourquoi alors y en a-t-il trois, et pas une ou cinq ? C'est d'ailleurs une des grandes questions de la physique contemporaine. Ce bégaiement de la nature n'est pas sans conséquences. Pour le comprendre, revenons sur les symétries. La théorie des champs quantiques implique l'existence d'une symétrie dite CPT, produit des symétries C on remplace la charge par une charge opposée, P on change le signe des coordonnées spatiales, et T on renverse le sens du temps. L'invariance de la physique par cette symétrie CPT pouvait laisser penser qu'il existait aussi une invariance par C, par P, par CP et par T, pris séparément. Or, l'interaction faible brise ce principe : elle n'est pas invariante par CP. Pratiquement, cela signifie que, dans certains processus de désintégrations radioactives, changer la charge d'une particule en la charge opposée et regarder le résultat dans un miroir inversion des coordonnées, est un processus qui n'a pas la même probabilité que le processus de départ... Cette brisure de la symétrie CP pourrait donc expliquer la prédominance dans l'Univers de la matière sur l'antimatière, laquelle a toujours la charge opposée à la matière. Les physiciens sont parvenus à montrer que, dans le cadre du modèle standard, la brisure n'est possible que s'il existe au moins trois familles de particules. Une ne suffit pas, deux non plus. Autrement dit, le bégaiement de la nature serait une des clefs de la prédominance de la matière sur l'antimatière dans l'Univers...Aucune ne l'est en principe. Elles peuvent en revanche être plus ou moins difficiles à observer, comme les neutrinos, ces leptons de charge électrique nulle. L'existence de ces particules neutres fut prédite par Wolfgang Pauli en 1932. Vingt ans plus tard, on découvrait le premier neutrino. Les neutrinos sont difficiles à observer car ils ne sont pas chargés et ne participent qu'à l'interaction faible : leur probabilité d'interagir avec la matière est par conséquent quasi nulle. Cette propriété complique aussi la mesure de leur masse, laquelle est peut-être nulle. La détection des quarks est, elle aussi, difficile même si ces fermions participent à toutes les interactions. Un quark ne peut s'observer directement pour la bonne raison qu'il se déplace toujours en bande, soit avec deux autres quarks, soit avec un antiquark.
Nous savons de plus qu'il existe trois couleurs possibles pour un quark ; or, ces couleurs sont telles que leur mélange par trois ou par deux produit des objets « blancs » - les seuls visibles d'après la théorie de l'interaction forte. Nous ne pouvons donc observer directement que les assemblages de quarks mais jamais les quarks isolés !Le physicien des particules ne peut répondre à cette question. Il peut certes prédire, grâce au modèle standard , un certain nombre de variables mais pas la valeur exacte des masses des particules. En revanche, la question « Pourquoi les particules élémentaires ont-elles une masse ? » occupe de nombreux théoriciens et expérimentateurs. En effet, d'après le modèle standard actuel, toutes les particules devraient logiquement être de masse nulle ! Pour comprendre cela, revenons quelques instants sur les propriétés d'invariance. Nous avons vu les quatre interactions fondamentales respectaient des invariances de jauge. Or, ces symétries imposent aux particules d'interaction, les bosons, d'être de masse nulle. C'est bien le cas du photon interaction électromagnétique ou des gluons interaction forte mais pas des bosons intermédiaires interaction faible très massifs 90 GeV, soit quatre-vingt dix fois la masse du proton. Pour expliquer ce phénomène, les physiciens ont inventé un nouveau champ quantique, le champ de Higgs, générateur de masse, et une nouvelle interaction associée, le mécanisme de Higgs. Pourquoi le champ de Higgs aurait-il rendu massives toutes les particules, à l'exception du photon et du gluon ? D'après le modèle standard, le phénomène correspond à une brisure spontanée de symétrie du champ de Higgs dans l'état fondamental stable qu'est le vide. C'est un peu comme si vous posiez une bille au fond d'une bouteille : l'état stable est trouvé lorsque la bille est à gauche ou à droite du cul de la bouteille état non symétrique, pas au-dessus état symétrique. Si le mécanisme de Higgs est valide, il faut alors imaginer l'existence d'une particule massive associée, le dénommé boson de Higgs. La course au boson de Higgs a d'ores et déjà commencé. Sa masse importante, quelques centaines de GeV, pourrait expliquer qu'on ne l'a pas encore découvert... Le grand projet de collisionneur à 14 TeV du CERN sera le test grandeur nature du mécanisme de Higgs.

Elémentaires, direz-vous ?
Pour certains physiciens, la structure de la matière en quarks, leptons et bosons pourrait n'être qu'une image encore très simplifiée de la réalité. Au plan théorique, le mécanisme de Higgs possède d'ailleurs de nombreuses inconsistances.
Une amélioration possible est d'envisager l'existence d'une sous-structure au sein des particules du modèle standard. Les énergies correspondantes seraient mille fois plus élevées que les énergies qui ont permis de mettre en évidence les quarks. Si elle existe, cette sous-structure doit impérativement être compatible avec toutes les observations réunies jusque-là. Une contrainte qui limite énormément l'ensemble des solutions mais qui laisse encore de la place à la discussion... Une autre façon d'améliorer le mécanisme de Higgs est l'idée qu'il existe deux autres bosons de Higgs donc deux autres champs quantiques de Higgs et surtout que chaque particule du modèle standard actuel possède un partenaire supersymétrique. Dans cette hypothèse, les bosons auraient des partenaires fermions, et les fermions des partenaires bosons. Tous ces partenaires supersymétriques auraient des masses de quelques centaines de GeV...
Ce nouveau dédoublement du monde après celui de la « matière-antimatière » sera testé sur le futur LHC au CERN. Mais l'imagination des physiciens ne s'est pas arrêtée là... Une approche, radicalement différente, proposée à la fin des années 1970, consiste à imaginer que les champs quantiques actuellement répertoriés ne sont que des approximations de basse énergie d'un phénomène que les physiciens désignent sous le terme de super-cordes.
Dans ce cadre conceptuel, les particules élémentaires actuellement repertoriées seraient des modes, des exci- tations d'une corde, objet fondamental étendu de très petite taille. Pour être étudié, ce modèle, sorte de théorie fondamentale ultime de la physique quantique, nécessiterait des énergies de 1019 GeV, soit l'énergie d'un Boeing 747 à sa vitesse de croisière concentré dans une particule ! La théorie des supercordes sera-t-elle validée aux basses énergies sur le LHC ? Certains en ont fait le pari.


DOCUMENT       larecherche.fr       LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solf�ège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales / Confidentialite

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon