ecole de musique piano
     
menu
 
 
 
 
 
 

ACQUISITION DE LA LANGUE MATERNELLE CHEZ LE NOURRISSON

  Auteur : sylvain Date : 22/09/2013
 

Paris, 6 septembre 2006


L'organisation du cerveau du nourrisson pourrait-elle expliquer l'acquisition rapide de la langue maternelle ?

Pourquoi seuls les humains sont-ils capables de maitriser un langage sophistiqué ? Comment se fait-il que les nourrissons dominent si rapidement leur langue maternelle, quand on songe aux difficultés de l'adulte pour apprendre une deuxième langue? Les réponses à ces questions se trouvent peut-être dans l'organisation particulière du cerveau humain et dans la collaboration étroite entre les régions qui ont des fonctionnalités différentes mais complémentaires. Telles sont les hypothèses émises par des équipes de l'Inserm, du CEA, de l'AP-HP et du CNRS. Leurs travaux complètent les conclusions apportées en 2002 par ces mêmes chercheurs qui démontraient alors que les nourrissons activaient les mêmes aires cérébrales que l'adulte lorsqu'ils écoutaient de la parole. Leurs résultats montrent aujourd'hui que l'organisation adulte, qui implique une coopération étroite entre les aires de compréhension (la région temporale dont l'aire de Wernicke) et celles de production verbale (l'aire de Broca dans la région frontale inférieure gauche), est déjà présente chez le nourrisson alors qu'il ne parle pas encore.
Ces nouvelles données paraissent cette semaine dans l'édition en ligne des PNAS (Proceedings of the National Academy of Science).
L'étude a été conduite par Ghislaine Dehaene et son équipe (unité Inserm 562 « Neuroimagerie cognitive ») au CEA, au sein du service hospitalier Joliot Curie. Elle a consisté à visualiser l'organisation des régions cérébrales activées par l'écoute de courtes phrases (de seulement 2 s) grâce à l'imagerie par résonance magnétique fonctionnelle (IRMf)(1). Ce travail a été mené chez 10 nourrissons âgés de 3 mois (4 filles et 6 garçons) à l'hôpital Necker Enfants-malades (AP-HP).

L'IRMf a permis aux chercheurs de constater que ces phrases provoquent l'activation en cascade de régions temporales et frontales. Les régions les plus proches du cortex auditif, s'activent dès le début de la phrase alors que d'autres, plus distantes comme l'aire de Broca, répondent plus lentement (cf.schéma). Cette progression de la réponse pourrait correspondre à une intégration du signal sonore dans des unités de plus en plus longues, permettant ainsi au nourrisson d'accéder à la structure emboîtées des phrases.

L'équipe a également observé que la réponse dans l'aire de Broca augmentait lorsque la phrase était répétée. Or, on sait que chez l'adulte cette région est cruciale pour la mémoire verbale à court-terme (quand on retient un numéro de téléphone par exemple). Ce processus de mémorisation semble reposer sur une répétition silencieuse des éléments à mémoriser.

Chez le nouveau-né l'activation de cette aire de Broca est surprenante. Elle permet d'assurer des fonctions qui sont encore très immatures (production verbale) ou bien inexistantes (intégration grammaticale) à 3 mois. Ces travaux conduits par l'équipe dirigée par Ghislaine Dehaene montrent que le nourrisson de 3 mois, bien qu'incapable de répéter des phrases entières, possède déjà le circuit neuronal qui lui permet de repérer certains éléments répétés de la phrase.

Par ailleurs, des travaux récents ont montré que dans l'équivalent de cette région chez les singes macaques existaient des neurones particuliers, appelés neurones "miroirs", qui sont activés non seulement lors de la réalisation d'une action, mais aussi dès que le macaque voit ou entend un congénère effectuer cette même action. Cette région pourrait donc être cruciale pour unifier les différentes représentations motrices (je parle), visuelles (je vois parler) et auditives (j'entends parler) de la parole et permettre au nourrisson de tirer le meilleur parti de son environnement sonore et visuel.

Reste maintenant à découvrir si d'autres stimuli font aussi appel à ce type de procédé et pourquoi seuls les bébés de l'espèce humaine apprennent à parler, deux points sur lesquels l'imagerie cérébrale devrait continuer d'apporter des réponses.

DOCUMENT             CNRS              LIEN

 
 
 
 

ARTERES ET VEINES

  Auteur : sylvain Date : 26/08/2013
 

Paris, 20 mai 2008

Artères et veines, un mariage forcé
Une équipe pluridisciplinaire, composée de physiciens et de biologistes français et allemands(1), vient de découvrir comment, chez l'embryon, les artères et les veines se développent en paires parallèles. Grâce à des mesures physiques, des modèles théoriques et des simulations numériques, les chercheurs montrent comment la croissance des artères oriente directement celle des veines par un processus dépendant uniquement des forces mécaniques en présence. Ces travaux sont publiés en ligne sur le site de la revue Physical Review E(2).
Un réseau vasculaire extraordinairement complexe, composé d’artères, de capillaires et de veines, parcourt l'organisme des vertébrés. Il apporte à chaque cellule l'oxygène et les nutriments nécessaires et permet d’évacuer les déchets métaboliques produits. Ce réseau contient un si grand nombre de branches que les positions de chaque vaisseau ne peuvent pas être codées génétiquement. Cependant, la génétique est souvent évoquée pour expliquer le fait que, chez l'adulte, les artères et les veines cheminent très fréquemment par paires parallèles, une artère étant même souvent encadrée par deux veines qui lui sont strictement parallèles. Pendant le développement embryonnaire une «conversation génétique» artères/veines permettrait en effet d’interpréter ce phénomène.

Dans leur article paru dans Physical Review E, les chercheurs montrent comment des phénomènes physiques (mécaniques, hydrodynamiques et élastiques) conduisent à un développement parallèle des artères et des veines.
Une étude détaillée du développent spatial et temporel des artères et des veines au stade embryonnaire montre qu'une métamorphose de l'arborescence vasculaire se produit spontanément en cours de croissance. Au stade embryonnaire précoce, on observe une organisation spatiale en série, où les artères et les veines sont situées dans des régions distinctes de l’espace. Puis rapidement, après quelques jours de développement embryonnaire, de nouvelles veines se développent en parallèle des artères existantes et les territoires vasculaires s’entrelacent.
A partir de visualisations du réseau vasculaire et de la mesure de paramètres mécaniques locaux réalisées in situ, les chercheurs démontrent que cette métamorphose est initiée par la croissance des artères. A leur voisinage, on observe une réponse visco-élastique du tissu vivant, se traduisant par un gonflement. Cette réponse entraîne à son tour une augmentation de la perméabilité du lit capillaire, très localisée dans des zones parfaitement parallèles aux artères précédemment formées. Ces zones de forte conductivité sont sélectionnées par l'écoulement sanguin qui y circule plus favorablement, puis remodelées en veines, dès que le tissu atteint une taille critique, qui a été prédite théoriquement. Des simulations numériques de l’écoulement sanguin réalisées dans des réseaux vasculaires idéalisés d’organes, à différents stades de croissance, ont confirmé ces résultats.

Ce travail apporte un éclairage nouveau sur l’importance de la mécanique dans le développement embryonnaire. Il existe dans les embryons un paysage de forces mécaniques formant une dentelle de régions dures ou molles, qui évolue spontanément sous l’action des poussées exercées par les cellules. Analyser la composante physique des différents actes du scénario du développement embryonnaire permettra de comprendre la cause des aberrations du développement ou des pathologies causées par des gènes défectueux, qui altèrent les propriétés physiques du tissu.

DOCUMENT         CNRS                 LIEN

 
 
 
 

PSYCHOPHYSIOLOGIE DE LA MUSIQUE

  Auteur : sylvain Date : 21/08/2013
 

 

Psychophysiologie de la musique

 

 
La méthode des potentiels cognitifs

Les potentiels cognitifs (ERPs en anglais, pour Event Related Potentials) sont des potentiels associés à un événement : ils sont formés de composantes générées par le traitement d’un événement. Ils sont issus du moyennage de l’activité EEG recueillie à la surface du crâne. Cette activité est la manifestation électrique globale de l’électrogénèse corticale. Plus précisément, ces oscillations semblent en grande partie émaner de l’activité post-synaptique des cellules pyramidales de ce cortex. Généralement, le protocole consiste à présenter un stimulus visuel, sonore… au sujet, et à enregistrer son activité EEG. Par exemple (cf. : Figure 1), on présente le mot « DOG » au sujet, a qui on a mis un bonnet à électrodes pour enregistrer l’activité cérébrale. Ce mot va être présenté par un 1er ordinateur (cf. : stimulus computer), qui va en même temps envoyer un marqueur à un 2ème ordinateur d’acquisition des données (cf. : digitizing computer), afin de repérer le moment exact où a été présenté le mot. Le signal étant faible, il va falloir l’amplifier (cf. : amplifier system) avant de le numériser (car jusqu’ici, les signaux provenant de l’activité cérébrale sont analogiques) à l’aide du 2nd ordinateur.

 

DOCUMENT           u-bordeaux2.fr            LIEN

 

 

 

 
 
 
 

NANOMACHINES

  Auteur : sylvain Date : 14/08/2013
 

Paris, 5 mars 2009

Une seconde pour sonder des nanomachines moléculaires au niveau atomique
Des chercheurs de l'Institut de biologie structurale Jean-Pierre Ebel (IBS, Institut mixte CEA-CNRS-Université Joseph Fourier, Grenoble) viennent de développer une nouvelle technique, basée sur la Résonance magnétique nucléaire (RMN), permettant de réduire considérablement le temps nécessaire pour sonder, au niveau atomique, des assemblages biomoléculaires de grandes tailles. Les temps d'analyse passent ainsi de plusieurs minutes à près d'une seconde ce qui ouvre un nouveau champ de recherche dans l'étude structurale de ces assemblages. Elles devraient permettre d'observer en temps réel les changements structuraux et dynamiques au sein de nanomachines(1) moléculaires lorsqu'elles exercent leur action. Ces résultats viennent d'être publiés en ligne par la revue Journal of the American Chemical Society.
L'étude fonctionnelle et structurale des nanomachines  biologiques est une tâche difficile compte tenu de la dimension des objets étudiés, de leur flexibilité et de la complexité des substrats manipulés (protéines, peptides, ADN, ARN…). Elle nécessite la combinaison de la cristallographie aux rayons X et de méthodes à « basse » résolution telles que la microscopie électronique. Ces méthodes permettent difficilement d'obtenir des informations cinétiques pourtant nécessaires pour comprendre la dynamique fonctionnelle d'un système.
 
La spectroscopie RMN[2] est la méthode de choix pour étudier, avec une résolution atomique, les propriétés structurales et dynamiques des macromolécules biologiques en solution. Récemment, le développement de techniques de marquages isotopiques spécifiques[3] a permis de repousser les frontières de cette méthode à l'analyse des assemblages biomoléculaires pouvant atteindre 1 méga Dalton[4]. L'utilisation de spectromètres RMN opérant à des champs magnétiques élevés a, de son côté, amélioré la résolution des observations. Cependant l'étude cinétique des modifications au sein de ces assemblages restait limitée par les temps de mesure (plusieurs minutes voire plusieurs heures) nécessaires pour repérer chaque groupe d'atomes par leurs signaux RMN spécifiques. Une autre technique nouvellement mise au point, la RMN rapide[5], permet d'accélérer l'enregistrement des spectres RMN.
Pour la première fois, les chercheurs de l'IBS ont réussi à combiner ces trois techniques, et ainsi, à réduire à près d'une seconde le temps expérimental requis pour sonder par RMN des assemblages biomoléculaires de plusieurs centaines de kilo Dalton.

DOCUMENT            CNRS            LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solf�ège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales / Confidentialite

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon