|
|
|
|
 |
|
NEURO-MODELAGE DES SOUVENIRS |
|
|
|
|
|
Neuro-modelage des souvenirs
Serge Laroche dans mensuel 344
daté juillet-août 2001 -
Comment les neurones parviennent-ils à enregistrer nos souvenirs de façon durable ? Les controverses sont vives. Néanmoins, le puzzle se constitue peu à peu autour d'une pièce centrale : la plasticité du cerveau. Variation de l'activité de certaines synapses, croissance de nouvelles d'entre elles, et peut-être même formation de nouveaux neurones semblent impliquées dans la formation de traces mnésiques au niveau cellulaire.
Plusieurs centaines de milliards de neurones, chacun relié directement à dix ou vingt mille autres neurones par des connexions appelées synapses : voilà la formidable machine de plus d'un million de milliards de connexions qui nous permet de percevoir, de construire nos souvenirs, mais aussi de savoir, de croire, de décider et d'agir.
La clé de ses capacités réside en une propriété étonnante : celle de pouvoir remodeler, reconfigurer ses propres circuits. A cette aune, qu'est-ce que la mémoire ? Le modèle général considère qu'à chaque souvenir correspondrait une configuration unique d'activité dans de vastes réseaux neuronaux. Or, on sait depuis longtemps que cette activité est, par nature, évanescente. Elle ne peut donc constituer une trace stable à long terme, compatible avec la quasi-permanence des souvenirs. Alors, comment ceux-ci s'inscrivent-ils ? Quelle est leur trace matérielle ?
L'idée d'une reconfiguration des circuits neuronaux naît en 1894, lorsque le neuroanatomiste Santiago Ramón y Cajal propose, au cours d'une conférence à la Royal Society de Londres, une hypothèse révolutionnaire : l'apprentissage faciliterait l'expansion et la croissance de protubérances - elles allaient bientôt s'appeler les synapses - qui connectent les neurones entre eux. Cette première formulation du concept de plasticité neuronale est, à l'époque, d'autant plus frappante que les études anatomiques du cerveau et de son développement révèlent la précision et la stabilité des assemblages neuronaux. Sans arguments expérimentaux directs, les positions théoriques s'affrontent entre les tenants de l'hypothèse de la plasticité et ceux qui, comme Lorente de Nó, un élève de Cajal, et Deslisle Burns, prônent une conception plus dynamique impliquant la circulation en boucle de l'activité neuronale dans des chaînes de neurones. En 1949, le psychologue canadien Donald Hebb énonce une hypothèse forte, qui permet de concilier les deux points de vue. Hebb propose que l'activité électrique que l'on observe dans des assemblées de neurones lors d'un apprentissage persiste pendant un certain temps, comme pour frayer un chemin, et que cela entraîne des modifications cellulaires ou biochimiques des neurones activés, de sorte que la force synaptique entre eux augmente. Un demi-siècle après la publication de l'ouvrage de Hebb, le postulat selon lequel l'activité simultanée de neurones connectés modifie les connexions synaptiques entre ces neurones est devenu la pierre angulaire de notre compréhension des bases cellulaires de la mémoire.
Mais un postulat n'a pas force de théorème. Comment prouver la réalité de cette plasticité ? Un premier argument en sa faveur est venu de l'étude de formes simples d'apprentissage en l'occurrence, du conditionnement chez un mollusque marin, l'aplysie. En 1970, Eric Kandel et ses collaborateurs mettent en évidence des changements fonctionnels des synapses de l'aplysie, corrélativement à cet apprentissage1. Ces résultats ne devaient trouver leur pendant chez les mammifères qu'en 1973. Timothy Bliss et Terje Lømo démontrent alors, en travaillant sur des lapins, l'extraordinaire capacité de plasticité des synapses de l'hippocampe - structure qui joue un rôle fondamental dans de nombreux types de mémoire voir l'article de Bruno Poucet dans ce numéro. Cette plasticité est désormais connue sous le nom de potentialisation à long terme, ou LTP2. Dans leur découverte initiale, les auteurs montrent qu'une brève stimulation à haute fréquence d'une voie neuronale envoyant des informations sensorielles du cortex à l'hippocampe, induit une augmentation importante et durable de l'efficacité de la transmission synaptique : les neurones cibles de l'hippocampe acquièrent une plus grande sensibilité à toute stimulation ultérieure. Le plus remarquable dans cette forme de plasticité, induite en quelques dizaines de millisecondes, est sa persistance : les synapses restent modifiées pour des semaines, voire des mois. Cette découverte suscita un enthousiasme considérable dans la communauté scientifique. Avait-on là le mécanisme du stockage de l'information dans le cerveau, que l'on cherchait depuis l'énoncé de la théorie de Hebb ? En étudiant les mécanismes de la LTP au niveau cellulaire, allait-on découvrir les mécanismes de la mémoire ? Cela semblait plausible à de nombreux chercheurs. Dès lors, un très grand nombre d'équipes ont orienté leurs travaux vers l'étude de ce modèle de plasticité.
Mécanismes de plasticité. Un premier courant, de loin le plus important en efforts de recherche, se penchait sur les mécanismes de la LTP au niveau cellulaire et moléculaire3. Les synapses concernées par le phénomène de plasticité utilisent le glutamate comme neuromédiateur. On en trouve dans l'hippocampe, bien sûr, mais aussi dans la plupart des structures corticales et sous-corticales du cerveau. Pour que ces synapses puissent être modifiées, il est impératif qu'elles soient d'abord activées, soit, en d'autres termes, que l'influx nerveux qui arrive au niveau du neurone présynaptique se propage au neurone post-synaptique. C'est le récepteur AMPA du glutamate qui permet la propagation de cet influx nerveux fig. 1. Si le neurone post-synaptique est suffisamment activé, un second récepteur jusqu'alors inactif, le récepteur NMDA, subit une modification qui fait que sa stimulation par le glutamate entraîne l'entrée de calcium dans la cellule. En découle l'activation de nombreuses protéines, en particulier des kinases* dont la calmoduline-kinase II CaMK II et les MAP kinases. Au moins deux types de mécanismes sont alors déclenchés : la phosphorylation* des récepteurs du glutamate tant NMDA que AMPA, et l'activation de la machinerie génique. Ainsi qu'on peut le voir en microscopie électronique, ces modifications aboutissent à un profond remodelage des circuits neuronaux : changement de la forme et de la taille des synapses, insertion de récepteurs du glutamate et transformation de synapses silencieuses en synapses actives, et croissance de nouvelles synapses.
Comment mettre à jour l'hypothétique lien entre plasticité synaptique et processus d'apprentissage et de mémorisation ? Le chemin était difficile, et l'histoire, encore jeune, de ces recherches est jalonnée de constantes fluctuations entre le rejet et l'acceptation de l'hypothèse. Toutefois, les connaissances sur les mécanismes moléculaires de la mémoire ont progressé ces dix dernières années à un rythme étonnant, et de plus en plus de résultats montrent que ces mécanismes de plasticité sont un élément déterminant du stockage des souvenirs.
Dans les années 1980, plusieurs laboratoires ont étudié des formes simples d'apprentissage associatif chez le rat, comme l'association d'un son avec un léger choc électrique. Après une certaine période de conditionnement, l'animal réagit au son seul comme il réagissait au choc électrique. Parallèlement, les neurones de nombreuses structures, y compris l'hippocampe, présentent une augmentation importante et sélective de leur fréquence de décharge. De plus, l'efficacité de la transmission synaptique dans les circuits de l'hippocampe augmente parallèlement aux progrès de l'apprentissage. Mais ces données n'ont qu'une valeur de corrélation, et ne sont pas la preuve d'une relation de cause à effet. Sans compter que les variations d'efficacité synaptique pen-dant l'apprentissage sont techniquement difficiles à mettre en évidence, car la transmission synaptique moyenne sur une large population de neurones reste relativement constante. De fait, des données suggèrent que le renforcement de certaines populations de synapses s'accompagne de l'affaiblissement d'autres. Ceci n'est pas si surprenant : comment concevoir que l'efficacité de très nombreuses synapses augmente chaque fois que l'on apprend ? Un tel système serait probablement très vite saturé. La dépression à long terme LTD, un mécanisme de plasticité inverse de la LTP que l'on peut observer dans certaines conditions d'activation synaptique, interviendrait-elle à ce niveau en évitant la saturation du système d'encodage et en augmentant le contraste entre synapses potentialisées et déprimées ? Ou jouerait-elle un rôle dans l'oubli comme le prédisent certains modèles théoriques ? Si des modifications synaptiques de type LTP ou LTD ont pu être observées dans différentes structures du cerveau en fonction de l'information à mémoriser, une analyse précise nécessitera le développement de nouvelles méthodes électro-physiologiques permettant d'isoler de petites populations de synapses.
La pharmacologie et la génétique ont apporté des réponses là où l'électrophysiologie se heurtait à ses limites. Le blocage de la LTP, obtenu en faisant appel à des techniques relevant de l'un ou l'autre de ces deux domaines, modifie-t-il les capacités d'apprentissage d'un animal ? A la fin des années 1980, le groupe de Richard Morris à Edimbourg montre que l'administration à des rats d'un antagoniste* des récepteurs NMDA, qui bloque la plasticité des synapses sans perturber la transmission des messages neuronaux assurée par le récepteur AMPA, rend ces animaux incapables d'apprendre une tâche de navigation spatiale. A mesure que les doses d'antagoniste augmentent, la plasticité synaptique diminue, et les déficits mnésiques se renforcent4. De notre côté, nous constations qu'en présence d'un antagoniste des récepteurs NMDA les neurones de l'hippocampe ne modifient plus leur activité pendant un apprentissage associatif, suggérant que ces mécanismes de plasticité sont nécessaires à la construction d'une représentation neuronale de l'information à mémoriser. Et, alors que l'équipe de Bruce McNaughton à Tucson montrait que la saturation de la LTP dans l'hippocampe par de multiples stimulations électriques perturbait l'apprentissage spatial, l'enthousiasme pour considérer que la LTP représentait un modèle des mécanismes de l'apprentissage grandissait. Mais le scepticisme quant au rôle de la LTP dans la mémoire s'installa de nouveau lorsque plusieurs équipes ne purent reproduire ce résultat. Il a fallu plusieurs années pour inverser la tendance et montrer que l'on observe un réel déficit mnésique pour peu que l'on s'approche autant que possible de la saturation maximale de la LTP, saturation qui empêche les synapses d'être modifiées pendant l'apprentissage.
Une autre approche déterminante a consisté à d'abord rechercher les mécanismes biochimiques et moléculaires de la mémoire, puis à voir s'ils étaient similaires à ceux de la plasticité. Les premières études que nous avons réalisées avec Tim Bliss au milieu des années 1980 ont ainsi mis en évidence une augmentation de la capacité de libération synaptique du glutamate dans différentes régions de l'hippocampe après un apprentissage associatif, par des mécanismes neurochimiques identiques à ceux de la LTP. Ces résultats ont été confirmés lors de la réalisation d'autres tâches d'apprentissage, comme l'apprentissage spatial. Nombre d'autres études ont montré que la phosphorylation de différentes kinases ou l'augmentation de la sensibilité des récepteurs du glutamate - ainsi que d'autres mécanismes cellulaires impliqués dans la LTP - sont activées lorsqu'un animal apprend5. Et inversement le blocage de ces événements biochimiques perturbe invariablement l'apprentissage.
Apports très récents. Plus récemment, les techniques de modification génique chez la souris ont permis d'apporter des réponses encore plus démonstratives. D'un grand nombre d'études il ressort que l'inactivation génétique de molécules importantes pour la plasticité perturbe corrélativement l'apprentissage. Des souris chez lesquelles les neurones de certaines zones de l'hippocampe n'expriment pas le récepteur NMDA se sont révélées particulièrement riches en enseignements. Chez ces souris, la LTP est abolie dans la région hippocampique concernée, la stabilité des cellules de lieu est altérée voir l'article de Bruno Poucet dans ce numéro et les animaux présentent corrélativement des déficits importants de mémoire spatiale6. Inversement, en augmentant, chez d'autres souris, l'expression d'un gène qui code une protéine du récepteur NMDA, l'équipe de Joe Tsien à Princeton a observé de nettes améliorations des performances mnésiques dans de nombreuses tâches d'apprentissage7. Au vu de ces résultats, il semble indéniable que le récepteur NMDA est un acteur clé de la mémoire. Mais, de façon surprenante, les déficits mnésiques observés chez les souris dépourvues de récepteur NMDA peuvent être compensés par une période d'élevage dans un environnement riche en stimulations sensorielles8 voir l'article de Claire Rampon. S'agit-il de la compensation de mécanismes moléculaires défectueux par d'autres ? La fonction déficiente est-elle prise en charge par d'autres circuits ? Il est encore trop tôt pour le dire, mais ce type de données montre qu'on ne saurait restreindre les capacités mnésiques d'un animal à la présence du récepteur NMDA dans telle zone du cerveau.
L'idée que la mémorisation repose sur des modifications synaptiques implique que ces modifications soient stabilisées et consolidées. Comment peuvent-elles perdurer en résistant au renouvellement des molécules de la cellule ? On a constaté que l'administration d'inhibiteurs de la synthèse protéique pendant l'apprentissage perturbe la mémoire à long terme sans altérer la mémoire à court terme. Il semble donc que ces deux types de mémoires reposent sur des mécanismes biologiques distincts - la mémoire à long terme requérant la synthèse de protéines. On observe du reste une dichotomie analogue dans la plasticité synaptique, dont seule la phase durable nécessite l'apport de nouvelles protéines. Déduction logique : les mécanismes de plasticité neuronale et de consolidation mnésique impliquent très probablement des régulations de gènes. C'est au début des années 1990 que les premières évidences en la matière ont été mises à jour : l'induction de la LTP dans l'hippocampe conduit à l'activation de gènes dans le noyau des neurones activés. Ces régulations transcriptionnelles commencent par l'activation rapide en quelques dizaines de minutes et transitoire jusqu'à quelques heures d'une classe de gènes appelés « gènes précoces ». Certains d'entre eux codent des protéines qui agissent directement au niveau de la synapse. Mais une fraction importante, dont fait partie le gène zif268 , code des facteurs de transcription nucléaires modifiant l'expression d'autres gènes appelés, eux, effecteurs tardifs5,9. La réponse transcriptionnelle globale se traduit, sur plusieurs jours, par des vagues successives d'expression de différents gènes. Par exemple, l'expression des kinases est augmentée dans une fenêtre temporelle de quelques heures à un jour, alors que les récepteurs du glutamate sont, quant à eux, surexprimés entre 2 et 4 jours après l'induction de la LTP.
Commutateur moléculaire. Ce sont les kinases activées par l'entrée de calcium induite par la stimulation du récepteur NMDA, et en particulier les MAP kinases, qui sont à l'origine de l'expression des gènes précoces. Une fois phosphorylées, ces kinases activent des facteurs de transcription tels que CREB, qui se fixent sur des sites spécifiques de promoteurs de gènes dans le noyau et modifient leur expression10. Plusieurs études montrent que ces mécanismes jouent un rôle important dans la mémoire : les MAP kinases sont rapidement phosphorylées lors de l'apprentissage et le blocage de leur phosphorylation pendant l'acquisition perturbe l'apprentissage. L'activation des gènes précoces serait, quant à elle, l'étape cruciale permettant le déroulement complet du programme cellulaire de transcription génique qui entraîne une modification durable de la connectivité neuronale. Les groupes d'Alcino Silva et d'Eric Kandel ont, par exemple, montré que l'inactivation génétique de CREB chez des souris mutantes conduit à un déclin rapide de la LTP hippocampique et à des déficits de mémoire dans de nombreuses tâches11,12. En collaboration avec Tim Bliss, nous avons montré que, chez des souris mutantes chez lesquelles le gène zif268 est invalidé, les neurones de l'hippocampe conservent leurs propriétés de plasticité, mais à court terme seulement. Corrélativement, seule la mémoire à court terme des souris mutantes est intacte : elles sont incapables de retenir une information au-delà de quelques heures dans des tâches de mémorisation de l'espace, de reconnaissance d'objets familiers ou des tests de mémoire olfactive ou gustative. Ainsi, les gènes précoces tels que zif268 joueraient-ils le rôle de commutateurs moléculaires permettant d'enclencher les changements synaptiques durables nécessaires à la formation de souvenirs à long terme13.
Nouveaux neurones. Le fait que les activations de gènes, et donc la synthèse de protéines, soient d'une telle importance lors de la LTP et de l'apprentissage a soulevé un autre problème : comment les nouvelles protéines synthétisées pouvaient-elles être dirigées vers les synapses activées, et seulement elles, sans être distribuées à toutes les synapses d'un neurone ? La question paraissait si difficile qu'on était amené à penser que la plasticité ne serait peut-être qu'un mécanisme non spécifique de facilitation globale de circuits. Mais, en 1997, Uwe Frey et Richard Morris démontrent par élimination de différentes hypothèses que le seul mécanisme possible est le marquage des synapses activées, marquage qui différencierait ces synapses des synapses non activées, et leur permettrait de « capter » les protéines nouvellement synthétisées14. La nature de ce marqueur est, pour l'heure, inconnue. La découverte d'ARN messagers et de ribosomes dans les dendrites, alors qu'on les pensait cantonnés au corps cellulaire du neurone, a, elle aussi, révolutionné l'approche du mécanisme de modification des synapses. Certains ARN messagers, comme celui qui code la kinase CaMKII, ont une expression dendritique qui augmente fortement dans la demi-heure qui suit l'induction de la plasticité et l'apprentissage. Il semble que ces ARNm migrent le long des dendrites, et soient capturés par les ribosomes qui se trouvent à proximité immédiate des synapses activées - mais pas par ceux qui se trouvent à proximité des synapses inactives fig. 2. Il n'est donc pas impossible que la synthèse locale de protéines soit un mécanisme important assurant la spécificité de la plasticité synaptique et du frayage neuronal.
Qui dit souvenirs à long terme, dit stabilisation de tout un relais synaptique. La plasticité se propage-t-elle dans des réseaux de neurones interconnectés ? On relève, là encore, l'importance des régulations de gènes. Prenons l'exemple du gène de la syntaxine, une protéine qui intervient dans la libération du neuromédiateur. Nous savions déjà que, après l'induction de la LTP, son expression augmente pendant plusieurs heures dans les neurones postsynaptiques d'une zone de l'hippocampe appelée gyrus denté. Une fois synthétisée, la protéine migre vers l'extrémité axonale de ces neurones, extrémité qui se trouve dans une autre zone de l'hippocampe, la zone CA3. Là, elle favorise la libération synaptique de glutamate, donc l'activation d'autres neurones, et l'induction d'une LTP à leur niveau. Il apparaît que la régulation de l'expression de la syntaxine intervient également lors d'un apprentissage. Lors d'une tâche de mémoire spatiale, son expression augmente non seulement dans les neurones de l'hippocampe, mais aussi dans des régions du cortex préfrontal15, ce qui suggère le frayage de réseaux neuronaux, en partie par son intermédiaire, lors de la mémorisation.
Comme on l'a vu, les recherches actuelles montrent que les expériences sensorielles laissent des traces dans le cerveau en modifiant l'efficacité des synapses entre neurones et en créant de nouvelles synapses. Et si de nouveaux neurones se créaient aussi ? Impossible, aurait-on dit, il y a encore peu de temps. Nous perdons des neurones en permanence parce que les neurones qui meurent continuellement dans le cerveau adulte ne sont pas remplacés, ce qui est probablement l'une des causes majeures de nombreux désordres neurologiques. Pourtant, des travaux de Joseph Altman à la fin des années 1960 suggéraient que de nouveaux neurones étaient générés dans le gyrus denté de l'hippocampe pendant la vie postnatale et chez le jeune adulte. D'autres travaux montraient aussi une neurogenèse dans certaines régions cérébrales impliquées dans la mémoire des chants chez les canaris. Ces recherches sont longtemps restées dans l'ombre car elles semblaient n'être que des exceptions face au dogme prévalent. Mais, en 1998, Elizabeth Gould et son équipe démontrent qu'une neurogenèse se produit dans le gyrus denté chez le singe adulte et, la même année, Freg Gage au Salk Institute en Californie et ses collègues suédois de l'université de Göteborg observent le même phénomène chez l'homme en étudiant les cerveaux de patients âgés de 57 à 72 ans16I. Ces nouveaux neurones sont produits à partir d'une population de cellules progénitrices qui migrent dans le gyrus denté et se différencient en neurones. D'autres études ont montré que cette neurogenèse chez l'adulte se produit aussi dans des régions corticales. Quel pourrait être le rôle fonctionnel de ce nouveau type de plasticité ? S'agit-il d'un mécanisme de remplacement compensant partiellement les pertes neuronales ou a-t-il un rôle spécifique dans certaines fonctions cognitives ? En ce qui concerne l'apprentissage, deux études viennent de montrer, d'une part, qu'il augmente la survie des nouveaux neurones formés dans le gyrus denté17 et, d'autre part, qu'il est perturbé lorsque l'on empêche la neurogenèse chez le rat adulte18 fig. 3. Peut-on en conclure qu'apprendre, c'est aussi former de nouveaux neurones et que ces nouveaux neurones sont impliqués dans le codage de l'information qui vient d'être apprise ? Peut-on imaginer faciliter ces mécanismes de neurogenèse pour tenter de compenser les déficits mnésiques associés à certaines maladies neurodégénératives ? Il est encore beaucoup trop tôt pour le dire.
Ouverture. De tous ces résultats fondamentaux, commencent à émerger, çà et là, des embryons d'explications quant aux mécanismes cellulaires de certaines pathologies de la mémoire, comme le syndrome de l'X fragile la plus commune des formes héréditaires de retard mental ou la maladie d'Alzheimer. Par exemple, chez des souris qui surexpriment la protéine APP* et présentent des signes neuropathologiques de la maladie d'Alzheimer, on observe, associée aux déficits mnésiques, une altération de la plasticité synaptique dans l'hippocampe19. Si les connaissances qui s'accumulent sur la plasticité synaptique constituent l'une des pierres de ce qui sera, un jour, une réelle théorie de la mémoire, elles pourraient donc aussi, à échéance peut-être plus courte, favoriser l'émergence de nouvelles pistes thérapeutiques pour compenser certains dysfonctionnements de la mémoire.
1 V. Castellucci et al., Science, 167 , 1745, 1970.
2 T.V.P. Bliss et T. Lømo, J. Physiol. Lond., 232 , 331, 1973.
3 T.V.P. Bliss et G.L. Collingridge, Nature, 361 , 31, 1993.
4 S. Davis et al., J. Neurosci., 12 , 21, 1992.
5 S. Davis et S. Laroche, C.R. Acad. Sci. Paris, 321 , 97, 1998.
6 T.J. McHugh et al ., Cell, 87 , 1339, 1996.
7 Y.P. Tang et al., Nature, 401 , 63, 1999.
8 C. Rampon et al., Nature Neurosci., 3 , 238, 2000.
9 K.L. Thomas et al., Neuron., 13 , 737, 1994.
10 S. Davis et al., J. Neurosci., 20 , 4563, 2000.
11 R. Bourtchuladze et al., Cell, 79 , 59, 1994.
12 M. Mayford et E.R. Kandel, Trends in Genetics, 15 , 463, 1999.
13 M.W. Jones et al., Nature Neurosci., 4 , 289, 2001.
14 U. Frey et R.G.M. Morris, Nature, 385 , 533, 1997.
15 S. Davis et al., Learning & Memory, 5 , 375, 1998.
16 P.S. Eriksson et al ., Nature Med., 11 , 1313, 1998.
17 E. Gould et al ., Nature Neurosci., 2 , 260, 1999.
18 T.J. Shors et al ., Nature, 410 , 372, 2001.
19 P.F. Chapman et al ., Nature Neurosci., 2 , 271, 1999.
NOTES
*Protéines-kinases
Enzymes qui catalysent une réaction de phosphorylation durant laquelle un groupement phosphate est fixé sur une protéine donnée.
*Antagoniste
Molécule capable de se lier spécifiquement à un récepteur donné sans produire d'effet physiologique.
*APP Protéine précurseur du peptide amyloïde qui est anormalement secrété dans la maladie d'Alzheimer et forme après agrégation la composante principale des plaques séniles observées chez les patients atteints de cette maladie.
DOCUMENT larecherche.fr LIEN |
|
|
|
|
 |
|
L'OPTOGÉNÉTIQUE |
|
|
|
|
|
L’optogénétique, quand la lumière prend les commandes du cerveau
19.06.2017, par Lucie Bard, chercheuse post-doctorante à l’University College London
Depuis une dizaine d’années, le développement de l’optogénétique a bouleversé les neurosciences. En rendant les neurones sensibles à la lumière, ce nouvel outil permet d’intervenir sur le cerveau et le système nerveux. Contrôle des souvenirs, du goût, de la soif… Les domaines d’application et leurs limites sont présentées dans ce nouveau billet du blog «Aux frontières du cerveau».
Le cerveau est probablement l’organe le plus complexe du corps humain. C’est un immense réseau formé de près de 100 milliards de neurones interconnectés, distribués dans différentes aires cérébrales et classés en différents sous-types selon le neurotransmetteur qu’ils libèrent en réponse à une stimulation. Une mauvaise communication neuronale est à l’origine de troubles neuropsychiatriques comme la schizophrénie et l’autisme. Etudier comment l’information est transmise dans les réseaux de neurones est donc primordial pour mieux comprendre le fonctionnement du cerveau en conditions physiologiques et pathologiques.
Pour cela, il est essentiel de pouvoir contrôler spécifiquement les différents types cellulaires qui composent les réseaux de neurones. Ceci a été rendu possible il y a maintenant un peu plus de dix ans par le développement de l’optogénétique, véritable révolution technologique dans le domaine des neurosciences. Cette technique consiste à modifier génétiquement des neurones afin qu’ils deviennent sensibles à la lumière grâce à l’expression d’une protéine : l’opsine.
En 2002, Georg Nagel, Ernst Bamberg et Peter Hegemann identifient la channelrhodopsine, une protéine photosensible issue d’une algue verte appelée Chlamydomonas reinhardtii. Chez ce micro-organisme unicellulaire, la channelrhodopsine est nécessaire à la phototaxie, processus par lequel certains organismes se dirigent dans l’espace par rapport à la lumière présente dans l’environnement, par exemple pour favoriser la photosynthèse. En 2003, ces mêmes chercheurs découvrent et caractérisent la channelrhodopsine-2, qui est aujourd’hui la protéine la plus utilisée pour les approches d’optogénétique.
Comment une protéine issue du monde unicellulaire pourrait-elle être utile en neurosciences ?
D’un point de vue mécanistique, la channelrhodopsine-2 est un canal ionique activé par la lumière bleue. Son activation se traduit par l’ouverture du canal qui permet alors l’entrée dans la cellule d’ions positifs (Figure 1). En 2005, Edward Boyden, Feng Zhang et Karl Deisseroth, de l’université de Stanford en Californie, montrent qu’exposer des neurones exprimant la channelrhodopsine-2 à de la lumière bleue permet leur activation en déclenchant des potentiels d’action (message électrique des neurones).
La puissance de cette approche est basée sur une précision spatiale mais aussi temporelle du contrôle des neurones. Précision spatiale puisqu’il est possible, par génie génétique, de cibler une population neuronale spécifique dans une région cérébrale bien définie de façon à ce que la channelrhodopsine ne soit produite que par les neurones que l’on souhaite activer (pour plus de détails, lire le billet « Des outils innovants pour étudier les circuits neuronaux »). De plus, des développements technologiques sont en cours afin de restreindre l’application de la lumière à une zone très localisée du cerveau. Précision temporelle, également, puisque l’activation des neurones est transitoire et n’a lieu que lorsque l’expérimentateur allume la lumière.
L’optogénétique ne se limite pas à la channelrhodopsine. Au fil des années, la modification par génie génétique des protéines existantes, ainsi que la découverte d’autres protéines sensibles à la lumière, ont permis aux chercheurs d’avoir accès à toute une panoplie d’outils pour contrôler l’activation des neurones. Par exemple, l’insertion de mutations dans la channelrhodopsine a permis de générer des protéines activées par la lumière rouge (Figure 2). À l’opposé, l’halorhodopsine, issue d’une bactérie appelée Halobacteria, permet non pas d’activer mais d’inhiber les neurones.
L’inception grâce à l’optogénétique ?
Grace à l’optogénétique, générer de faux souvenirs est maintenant possible chez le rongeur, ce qui permet une meilleure compréhension de la mémoire et de ces mécanismes. En 2013, l’équipe du professeur Susumu Tonegawa (prix Nobel de physiologie ou médecine, 1987) au Massachussetts Institute of Technology (Boston) a montré qu’il était possible d’implanter de faux souvenirs chez des souris en activant des neurones par optogénétique dans l’hippocampe, une structure cérébrale essentielle dans les processus de mémorisation. En effet, lorsque les souris découvrent un nouvel environnement, certaines cellules de cette région sont spécifiquement activées et participent de façon spécifique à la mémorisation du contexte spatial. Dans l’expérience conduite par le laboratoire de Susumu Tonegawa, des souris ont été, dans un premier temps, placées dans une cage A (Figure 3). L’exploration de cet environnement entraîne l’activation sélective d’une population de cellules de l’hippocampe (neurones A) qui, couplée à une approche de génie génétique, permet d’exprimer la channelrhodopsine spécifiquement dans ces neurones.
Ces mêmes souris ont ensuite été placées dans une cage B, dans laquelle les neurones A ne sont pas naturellement activés car le contexte est différent de celui de la cage A. Mais les chercheurs ont activé artificiellement les neurones A en projetant de la lumière bleue dans l’hippocampe grâce à une petite fibre optique. Simultanément, dans cette cage B, les souris ont reçu de faibles chocs électriques qui induisent alors une réponse de peur. Par la suite, lorsque les souris ont été replacées dans la cage initiale A, elles ont montré une réaction de peur alors que cet environnement spatial n’avait jamais été associé à des chocs électriques. Les chercheurs ont ainsi réussi à associer de façon artificielle l’activation des neurones A à la réaction de peur et ainsi créer un faux souvenir.
L’optogénétique pour faire aimer les choux de Bruxelles à nos enfants ?
L’optogénétique a également été utilisée pour mieux comprendre les circuits neuronaux associés à la soif et au goût. En particulier, le laboratoire de Charles Zuker à l’université de Columbia (New York) a montré en 2015 qu’il était possible de déclencher la sensation de soif chez des souris en activant par optogénétique une population de neurones de l’hypothalamus, et ceci même quand les souris étaient parfaitement bien hydratées. Cette même équipe s’est également intéressée au système gustatif. Le goût est représenté par cinq saveurs : sucrée, salée, amère, acide et « umami » (qui signifie « savoureux » en japonais et qui décrit un goût appétissant de bouillon ou de viande généré par la présence de glutamate). Nombre d’entre nous pensent que ces différentes saveurs sont détectées au niveau de zones bien définies sur la langue mais il semblerait que cela soit un mythe. En effet, on sait aujourd’hui que les récepteurs responsables de la détection des différentes saveurs sont distribués de façon uniforme à la surface de la langue au niveau des papilles gustatives. Celles-ci sont innervées par des fibres nerveuses qui transmettent les informations jusqu’au cortex gustatif.
Dans cette structure, les différentes saveurs sont représentées au niveau de champs topographiques bien distincts les uns des autres, ce qui permet de cibler très spécifiquement les neurones activés par telle ou telle saveur. C’est l’approche qu’a utilisée l’équipe de Charles Zuker en induisant l’expression de la channelrhodopsine soit dans les neurones codant pour la saveur amère, soit dans ceux codant pour la saveur sucrée. De façon naturelle, les souris ont une attraction pour les substances sucrées et une aversion pour les substances amères. Cependant, si on stimule spécifiquement les neurones codant pour la saveur amère dans le cortex gustatif, on déclenche alors chez les souris une réponse de répulsion si intense que les souris refusent alors les substances sucrées. Inversement, lorsque les neurones de la saveur sucrée sont spécifiquement activés, les souris présentent une réponse d’attraction qui va même jusqu’à masquer leur aversion pour les substances amères. Les neurones codant pour la saveur amère pourraient donc être baptisés « neurones du dégoût » et ceux codant pour la saveur sucrée, « neurones de la gourmandise ».
Des applications thérapeutiques de l’optogénétique dans un futur proche ?
Comme l’illustrent les études précédemment décrites, l’optogénétique est un outil incomparable pour améliorer notre compréhension du fonctionnement cérébral. Mais peut-on imaginer des applications thérapeutiques chez l’humain à court terme ? Ceci paraît peu probable, car c’est une technique qui reste pour l’instant très invasive. En effet, son application nécessite des approches de thérapie génique qui consistent à modifier des neurones en injectant un virus codant pour la channelrhodopsine dans l’aire cérébrale ciblée. Quelles doses de virus doit-on administrer ? Existe-il des effets secondaires à long terme ? Autant de questions auxquelles on doit préalablement répondre avant d’envisager concrètement une application chez l’homme.
Par ailleurs, cette technique nécessite l’implantation d’une fibre optique dans le cerveau pour illuminer et activer les neurones modifiés dans l’aire cérébrale ciblée, ce qui reste à ce jour difficile, notamment pour les aires cérébrales profondes. En effet, la lumière bleue traverse assez mal les tissus. Des recherches sont en cours pour développer des outils optogénétiques activables par la lumière infrarouge, beaucoup plus efficace pour pénétrer dans les tissus, en vue de remplacer l’implantation de fibres optiques par des diodes électroluminescentes (LED) disposées à la surface du crâne. Le développement de nouvelles opsines, de plus en plus performantes est fulgurant. Injecter aujourd’hui une opsine chez un patient âgé de 30 ans c’est un peu comme l’envoyer sur Pluton avec les technologies aérospatiales des années 70. Il paraitrait donc plus sage d’attendre d’avoir des outils optogénétiques optimisés avant de se lancer dans des essais cliniques chez l’homme.
Les études présentées dans cet article ne reflètent qu’une infime partie des travaux employant l’optogénétique. À ce jour, ce serait plus de 1 000 laboratoires dans le monde qui utiliseraient cette approche pour améliorer notre compréhension du fonctionnement du cerveau. Les six inventeurs de l’optogénétique, Ernst Bamberg, Edward Boyden, Karl Deisseroth, Peter Hegemann, Gero Miesenböck et Georg Nagel, ont reçu en 2013 le très convoité « Brain Prize » pour « l’invention et le développement de l’optogénétique. Cette technique révolutionnaire permet d’allumer et d’éteindre avec de la lumière des populations de neurones génétiquement modifiés, permettant ainsi non seulement d’étudier le fonctionnement des circuits neuronaux mais également de développer de nouvelles approches thérapeutiques pour les troubles neurologiques et psychiatriques. »
Références
1. Boyden E. S., Zhang F., Bamberg E., Nagel G., Deisseroth K., « Millisecond-timescale, genetically targeted optical control of neural activity », Nature Neuroscience, 2005, vol. 8 (9) : 1263-8. doi: 10.1038/nn1525.
2. Nagel G., Ollig D., Fuhrmann M., Kateriya S., Musti A., Bamberg E. et al., « Channelrhodopsin-1: A Light-Gated Proton Channel in Green Algae », Science, 2002, vol. 296 (5577) : 2395-8. doi: 10.1126/science.1072068.
3. Nagel G., Szellas T., Huhn W., Kateriya S., Adeishvili N., Berthold P. et al., « Channelrhodopsin-2, a directly light-gated cation-selective membrane channel », Proceedings of the National Academy of Sciences of the United States of America, 2003, vol. 100 (24) : 13940-5. doi: 10.1073/pnas.1936192100.
4. Oka Y., Ye M., Zuker C. S., « Thirst driving and suppressing signals encoded by distinct neural populations in the brain », Nature, 2015, vol.520 (7547) : 349-52. doi: 10.1038/nature14108.
5. Peng Y., Gillis-Smith S., Jin H., Tränkner D., Ryba N. J. P., Zuker C. S., « Sweet and bitter taste in the brain of awake behaving animals », Nature, 2015, vol. 527 (7579) : 512-5. doi: 10.1038/nature15763.
6. Ramirez S., Liu X., Lin P.-A., Suh J, Pignatelli M., Redondo R. L. et al., « Creating a False Memory in the Hippocampus », Science, 2013, vol. 341 (6144) : 387-91. doi: 10.1126/science.1239073.
Lucie Bard est docteure en Neurosciences. Elle cherche à comprendre comment l’information est transmise dans les réseaux de neurones par des approches de microscopie optique et d’électrophysiologie. Elle a effectué sa thèse sous la direction de Laurent Groc à l’université de Bordeaux au cours de laquelle elle s’est intéressée aux mécanismes moléculaires qui contrôlent l’ancrage des récepteurs du glutamate de type NMDA dans les synapses. Depuis 2011, elle est en post-doctorat dans le laboratoire de Dmitri Rusavov à l’University College London au Royaume-Uni et s’intéresse au dialogue entre neurones et astrocytes et son rôle dans la physiologie synaptique. Sur Twitter @LucieBard.
DOCUMENT cnrs LIEN |
|
|
|
|
 |
|
THÉORIE DE L'ÉVOLUTION |
|
|
|
|
|
saut évolutif
La théorie de l'évolution des espèces dite théorie néodarwinienne, qui est reconnue comme la théorie aujourd'hui dominante dans la communauté scientifique, fut fondée officiellement en 1947, lors du congrès de Princeton, aux États-Unis. À la fin des années 1990, une autre autre synthèse évolutionniste est en train de se forger, prenant à la fois en compte les données de la paléontologie relatives aux « équilibres ponctués », celles de la génétique du développement et celles de la génétique de la spéciation. Cette théorie repose fondamentalement sur la notion d'évolution discontinue, par « sauts évolutifs ».
Les monstres prometteurs
La théorie néodarwinienne de 1947, souvent également qualifiée de « théorie synthétique de l'évolution », dans la mesure où elle représente la synthèse des données de la génétique des populations, de la systématique (identification et délimitation des espèces dans la nature) et de la paléontologie, a pour principaux fondateurs le généticien russe émigré aux États-Unis Theodosius Dobzhansky, le systématicien allemand émigré aux États-Unis Ernst Mayr et le paléontologiste américain George Simpson. Elle fut élaborée en opposition à une autre théorie de l'évolution défendue dans les années 1940 par un généticien allemand réputé, lui aussi émigré aux États-Unis, Richard Goldschmidt. Celui-ci soutenait que les phénomènes génétiques responsables de la naissance des espèces sont différents de ceux qui ont lieu continuellement dans les populations : ces derniers sont représentés par des mutations génétiques aléatoires (ou micromutations), responsables de l'apparition continuelle de nouvelles variantes des gènes. Selon la thèse défendue par Dobzhansky, Mayr et Simpson, en effet, l'évolution consiste fondamentalement, au sein des populations composant une espèce, en un processus de remplacement de variantes de gènes données par de nouvelles variantes de ces mêmes gènes. Autrement dit, la formation d'une nouvelle espèce, selon cette façon de voir, s'opère par le biais d'un processus continu conférant à une population donnée, au sein d'une espèce, le statut de race nouvelle, puis de sous-espèce, ensuite d'espèce nouvelle dite « jumelle » de l'espèce-souche (car encore indistinguable d'elle à l'œil nu) et, enfin, d'espèce nouvelle avérée, parfaitement distincte morphologiquement de l'espèce-souche.
La théorie néodarwinienne admet que, pour chacun de ces stades successifs de la formation d'une nouvelle espèce, au sein du patrimoine génétique de la population considérée, les nouvelles variantes (qui remplacent des variantes antérieures) figurent dans une proportion de plus en plus grande. Dans les années 1940, la réalité de ce processus n'était attestée que de façon indirecte par le recoupement d'observations provenant de différentes sources. Ce n'est que dans les années 1970 que Th. Dobzhansky et ses collaborateurs (tel le généticien américain Francisco Ayala) ont effectivement prouvé directement, par exemple : d'une part, que la mouche drosophile d'Amérique du Sud Drosophila willistoni a bien donné naissance à une espèce distincte par le biais du processus continu évoqué ci-dessus (différenciation en race, sous-espèce, espèce jumelle et espèce morphologiquement distincte) ; d'autre part, qu'au cours de ce processus le taux de remplacement des gènes par de nouvelles variantes a été de 3 % au niveau de la race, de 23 % au niveau de la sous-espèce, de 58 % au niveau de l'espèce jumelle et de 100 % au niveau de l'espèce morphologiquement distincte.
Mais, de son côté, Richard Goldschmidt avait soutenu un point de vue différent, dans le courant des années 1940, dans son ouvrage The Material Basis of Evolution. Il y estimait que si l'on pouvait, certes, identifier au sein des espèces des races et des sous-espèces, elles ne représentaient pas les premiers stades de la naissance de nouvelles espèces. Celles-ci, selon lui, se forment bien à partir d'espèces-souches, mais par un processus différent, consistant en un remodelage de la morphologie, dû à des mutations particulières affectant le programme de développement : par exemple, par l'allongement ou le raccourcissement de la colonne vertébrale ou des membres, chez les vertébrés : ou par l'apparition ou la disparition brusque d'organes (comme les ailes chez les insectes)… Selon Goldschmidt, ces remodelages se produisent très tôt dans le développement et sont le résultat de mutations spéciales (qu'il appelle « mutations systémiques »), différentes des micromutations qui se produisent dans les populations pour donner des races ou des sous-espèces. Des animaux d'un nouveau type surgissent directement de ce processus de remodelage, et R. Goldschmidt les appela des « monstres prometteurs » (dénomination issue de l'observation inverse, selon laquelle, le plus souvent, les mutations qui changent considérablement la morphologie des individus à la naissance donnent plutôt des monstres non viables, par exemple le mouton à cinq pattes). Cependant, le généticien germano-américain eut du mal à prouver l'existence des monstres prometteurs et des mutations spéciales du développement, et sa théorie sombra dans l'oubli, dans la mesure où elle fut totalement supplantée par la théorie de Dobzhansky-Mayr-Simpson.
Les équilibres ponctués
Pourtant, dans les années 1970, divers généticiens sont revenus sur la question de la naissance des nouvelles espèces en se demandant si ce phénomène ne dépendait pas, dans certains cas, de phénomènes spéciaux (même si, dans d'autres cas, comme celui des drosophiles d'Amérique du Sud, le mécanisme est bien celui du phénomène graduel invoqué par la théorie néodarwinienne). Par exemple, le généticien britannique A.R. Templeton a suivi, en laboratoire, le devenir d'une petite population d'une mouche hawaiienne, Drosophila mercantorum, élevée dans les conditions préludant à la formation de nouvelles espèces : il a observé l'apparition d'un certain nombre de types inhabituels, comme le mutant baptisé « Abnormal abdomen », caractérisé par de nombreux changements simultanés de la morphologie (aspect anormal de l'abdomen) et de la biologie (longévité diminuée, mais fécondité plus élevée).
Certaines observations des paléontologistes, dans les années 1970 et 1980, peuvent également appuyer cette thèse. Par exemple, l'Américain P.G. Williamson a observé en 1981 de nombreuses espèces d'escargots fossiles se succédant dans les strates géologiques proches du lac Turkana, en Afrique de l'Est. Leur mode d'évolution se conformait à celui qui avait été découvert et appelé « modèle d'évolution par équilibres ponctués », en 1972, par les paléontologistes américains Stephen Jay Gould et Niles Eldredge. Autrement dit, chaque espèce donnée persistait pratiquement sans changement pendant quelques millions d'années, puis laissait brusquement place, à l'issue d'une phase de transition rapide, à une espèce nouvelle qui allait ensuite à son tour persister pendant de nombreux millions d'années. Or, P.G. Williamson a remarqué que, pendant les phases de transition rapide, des individus aberrants apparaissent souvent. À la suite de vastes polémiques, un consensus au sein de la communauté internationale des paléontologistes s'est établi, au cours des années 1990, pour admettre que les deux processus - évolution par équilibres ponctués et évolution graduelle continue - se rencontrent dans les archives paléontologiques (ce dernier modèle transposant dans les strates géologiques le processus de formation progressive des nouvelles espèces à partir d'espèces-souches). Toutefois, à la suite notamment des travaux d'Alan H. Cheetham, un ancien collaborateur de G.G. Simpson, sur les bryozoaires, la communauté internationale des paléontologistes a même admis que, lorsque les études sont menées avec suffisamment de rigueur, c'est le modèle d'évolution par équilibres ponctués qui l'emporte le plus souvent sur le modèle de l'évolution graduelle et continue au sein des archives géologiques.
Ainsi, la phase de stabilité des espèces, reconnue par le modèle des équilibres ponctués, est bien attestée dans les archives géologiques. Mais la phase de transition rapide est beaucoup moins facile à observer, précisément puisque, étant de courte durée, elle n'a que peu de chances de laisser des traces sous forme de fossiles. C'est donc par des déductions indirectes que peut être établie l'existence dans l'histoire évolutive des espèces de ces phases de transition rapide, accompagnées de changements morphologiques importants. L'une de ces déductions se fonde, par exemple, sur l'observation selon laquelle les mammifères ont, dans leur ensemble, connu une évolution rapide et de grande ampleur de leur morphologie dans les temps géologiques, alors que leurs protéines n'ont subi que peu de changements durant le même temps. Or, les changements évolutifs chez les protéines dépendent des micromutations classiquement envisagées dans la théorie néodarwinienne. En revanche, les changements dans la morphologie sont attribuables à des mutations des gènes de régulation du développement embryonnaire, autrement dit des gènes contrôlant le déroulement du programme génétique au cours du développement précoce de l'organisme. En fait, c'est même la biologie évolutive de l'espèce humaine qui offre les meilleurs arguments dans ce sens : la comparaison de la totalité de notre ADN (acide désoxyribonucléique, molécule formant le substrat du patrimoine génétique) avec la totalité de l'ADN de l'espèce zoologiquement la plus proche, le chimpanzé, montre que, à ce niveau moléculaire fondamental, la différence entre l'homme et le singe est de 1,6 %. Or, il est évident que nous différons sur le plan morphologique au point qu'un zoologiste extraterrestre ne pourrait pas nous prendre pour des espèces « jumelles ». D'où la conclusion admise par la plupart des biologistes : la naissance de la lignée humaine issue d'un ancêtre de type « grand singe » a vraisemblablement été liée à des changements génétiques ayant affecté les gènes de régulation du développement morphologique au cours de la vie embryonnaire.
La génétique des sauts évolutifs
À la fin de l'année 1998, deux généticiennes américaines, Suzanne L. Rutherford et Susan Lindquist, de l'université de Chicago, ont publié des résultats apportant pour la première fois la preuve que des changements de morphologie peuvent se réaliser avec rapidité d'une génération à l'autre par des mécanismes génétiques différant complètement de ceux postulés par la théorie néodarwinienne. Elles ont observé que des mouches drosophiles touchées par une mutation dans un gène particulier, appelé Hsp90, présentent des anomalies telles que pattes déformées, ailes de petites dimensions, yeux colorés en noir ou absents, etc. La fréquence d'apparition de ces mouches souffrant de difformités était d'abord faible : de 1 à 3 % de la population dans la première génération. Dans la mesure où, tels des « monstres prometteurs », elles étaient néanmoins capables de se reproduire, les chercheuses ont procédé à des croisements sélectifs des mouches difformes. De cette façon, en un petit nombre de générations, la malformation des yeux, par exemple, a concerné près de 90 % de la population (le nombre des gènes concourant à l'émergence de malformations de ce type étant de l'ordre d'une demi-douzaine, le même résultat n'aurait pas pu être facilement obtenu par le processus classique de la sélection cumulative des micromutations). Plus étonnant encore : les chercheuses ont montré que l'effet de la mutation de Hsp90, c'est-à-dire l'apparition de mouches monstrueuses, ne se fait souvent sentir que dans des conditions environnementales anormales (comme l'élévation de la température ambiante jusqu'à 30 °C). Elles ont alors expliqué la modification rapide des caractères morphologiques chez les drosophiles de la manière suivante.
Normalement, le gène Hsp90 détermine la présence dans les cellules d'une protéine dite « de choc thermique » (le sigle « HSP » correspond aux initiales de heat shock protein, « protéine de choc thermique »). Cette protéine particulière a pour rôle, à l'état normal, de restaurer la forme et, par suite, la fonction des protéines endommagées par des mutations génétiques ou par l'agitation thermique. Supposons que la forme donnée d'un organe (qu'il s'agisse ou non d'une malformation) dépende de la mutation combinée de 6 protéines : cette forme n'apparaîtra pas tant que la protéine Hsp90 est à l'état normal dans la cellule car, même si les mutations des gènes correspondant à ces 6 protéines sont bien présentes, la protéine Hsp90 les empêchera de se manifester. Mais, lorsque la protéine mute, elle ne joue plus son rôle de restauratrice des fonctions protéiques endommagées, surtout lorsque les conditions environnementales de stress mobilisent le peu qui lui reste encore de ses capacités restauratrices. Dès lors, les mutations en question vont pouvoir se manifester et la forme de l'organe en question va brusquement changer. Autrement dit, ce type de mécanisme génétique responsable des changements de la morphologie des organismes a pour caractéristique d'accumuler « en secret » les mutations nécessaires, puis de les démasquer brusquement, notamment lorsque certaines conditions d'environnement particulières sont réunies. Plus d'un demi-siècle après sa conception, la théorie de R. Goldschmidt reçoit donc un début de confirmation, tandis que celle des équilibres ponctués de S.J. Gould et N. Eldredge trouve enfin la base génétique qui lui manquait pour expliquer les phases rapides de naissance des espèces.
DOCUMENT larousse.fr LIEN
|
|
|
|
|
 |
|
CLONAGE REPRODUCTIF, CLONAGE THÉRAPEUTIQUE |
|
|
|
|
|
CLONAGE REPRODUCTIF, CLONAGE THÉRAPEUTIQUE
Depuis l'annonce, en 1997 de la naissance du mouton Dolly, on a pu obtenir - chez quatre espèces, le mouton, la vache, la chèvre et la souris - des jeunes par clonage de cellules prélevées sur des animaux adultes. L'efficacité de la technique reste encore faible. Le taux élevé de mortalité périnatale et foetale tardive, environ 40% des gestations établies, traduit l'existence d'effets épigénétiques à long terme induits par les perturbations précoces de l'environnement du noyau zygotique. Le clonage doit aujourd'hui être considéré, avant tout, comme une voie de recherche pour l'étude de la plasticité fonctionnelle du noyau des cellules différenciées. La maîtrise du clonage animal offrirait de nombreuses perspectives d'applications pour l'expérimentation animale, et aussi l'obtention d'animaux transgéniques issus de noyaux modifiés lors de la culture des cellules donneuses. Le non recours au clonage reproductif s'impose aujourd'hui chez l'homme, non seulement par simple précaution - compte tenu des cas de syndromes létaux observés chez les animaux clonés - mais aussi pour des raisons éthiques. L'obtention à partir de blastocystes humains issus du clonage, de cellules embryonnaires multipoptentes qui seraient ensuite différenciées en culture ouvrirait la voie au développement des autogreffes pour corriger des défauts tissulaires. Ce clonage dit thérapeutique et impliquant l'utilisation de très jeunes embryons à des fins de recherche, n'est toutefois pas prêt de devenir réalité.
Texte de la 28ème conférence de l'Université de tous les savoirs réalisée le 28 janvier 2000 par Jean-Paul Renard
Le Clonage
La naissance du mouton Dolly "a fait la une" dans les médias du monde entier. Chez cette brebis, le noyau qui contient son patrimoine génétique a été prélevé de la glande mammaire d'une de ses congénères. Il a ensuite été transplanté dans un ovule prélevé sur une autre brebis, ovule dont on avait préalablement retiré le matériel génétique, c'est à dire les chromosomes maternels. Preuve était faite que même les mammifères peuvent se reproduire par une autre voie que la voie sexuée ! D'où la grande inquiétude : serait-il possible de faire chez l'homme ce que l'on a fait chez l'animal ?
Qu'est-ce qu'un clone ?
Un clone est un ensemble d'organismes génétiquement identiques.. Il est possible de cloner des molécules, des cellules ou des êtres vivants, qu'il s'agisse de micro-organismes, de végétaux ou d'animaux. Le clonage est un mode de reproduction naturel chez de nombreuses espèces. Ainsi, les bactéries peuvent se reproduire par scissiparité, les plantes par bouturage ou marcottage, et de nombreux invertébrés (abeille, puceron, daphnies) par parthénogenèse.
Dans tous les cas et contrairement à une idée répandue, le clone au sens de copie conforme n'existe pas en biologie : car même s’ils sont génétiquement identiques, deux organismes vivants manifesteront très vite des différences dues au fait que l’environnement vient moduler l’action des gènes.
Telle était la définition du clone avant l’annonce de la naissance du mouton Dolly. Depuis, la publicité que lui a consacré la revue scientifique “ Nature ” a fait évoluer l’usage de ce mot: il sert maintenant le plus souvent à désigner un animal, fut il unique, obtenu à partir du noyau d’une cellule non reproductrice, c’est à dire d’une cellule somatique, prélevée sur un animal adulte. Dolly était unique puisque l’animal sur le quel avait été prise la cellule donneuse de noyau, cellule qui avait été cultivée puis conservée à l’état congelé, était mort bien avant la naissance du fameux mouton. Mais Dolly fut appelée “ clone ”. Depuis, d’autres mammifères clonés ont vu le jour, notamment des veaux et plus récemment des souris, quelques chèvres et quelques porcs. Depuis deux ans, nous avons produit quelques souris et une douzaine de veaux clonés de la race Holstein au laboratoire de l’INRA de Jouy-en-Josas. Certains de ces veaux sont issus de noyaux provenant du même animal donneur et sont donc bien génétiquement identiques. Pourtant la répartition des taches noires et blanches de leur pelage diffère d’un individu à l’autre ; placés au milieu d’autres veaux non clonés, on a quelques difficultés à les reconnaître ; si on les observe plus attentivement , on constate par exemple que leur comportement alimentaire est en certains points très semblable, mais en d’autres très différents.. On est loin de la vision simpliste du clonage comme ” photocopieuse ”.
Les voies du clonage
Trois techniques très différentes permettent d'obtenir des animaux génétiquement identiques : la dissociation, la section ou le transfert de noyaux.
La dissociation consiste à prendre les cellules d'un tout jeune "embryon". Le mot embryon est utilisé ici comme un nom générique désignant les premiers stades du développement depuis le stade “ une cellule ”, c’est à dire celui de l'œuf fécondé, jusqu’au stade blastocyste à partir duquel se réalise l’implantation dans l’utérus de la mère. Au delà commence le développement du fœtus, même si souvent on réserve l’usage de ce mot à la période plus tardive à partir de laquelle apparaît une forme organisée (avec une partie antérieure et une partie postérieure) qui prendra ensuite un aspect caractéristique de l’espèce concernée. Pour obtenir un clone par dissociation, il faut partir des cellules issues soit de la première (deux cellules), de la deuxième (quatre cellules), ou, tout au plus, de la troisième (huit cellules) division de l’œuf. En les replacant soit seules, soit par groupe de deux dans la petite coque de glycoprotéines qui entoure l’œuf, la zone pellucide, on obtient autant d’embryons qui peuvent ensuite, chacun ou par groupe de deux, être transplantés dans une femelle porteuse. Le singe “ Tétra ”, né récemment dans un laboratoire de l’Oregon aux USA, a été obtenu de cette façon. Une équipe canadienne de l’Université de Guelph a pu, il y a quelques années, produire 4 veaux à partir des huit cellules d’un embryon ce qui constitue un record.
La scission d'un embryon se fait à un stade un peu plus tardif au stade blastocyste (ou blastula). A ce stade, les cellules de l’embryon viennent juste de commencer à se différencier en deux types bien distincts, celles qui ne donneront que le placenta, et celles qui donneront le fœtus et une partie du placenta. La zone pellucide commence à se fendre ce qui permettra au blastocyste de s’implanter. Si on coupe en deux parties ce blastocyste, en prenant soin de répartir à peu près également les deux types cellulaires facilement reconnaissables, on peut obtenir des jumeaux. C'est d’ailleurs ce qui se produit naturellement, mais très occasionnellement quand, au moment de s’échapper de la zone pellucide, l’embryon se trouve momentanément géné par une ouverture qui se révèle être de façon fortuite trop étroite. Telle est l’origine, chez l’homme, des jumeaux vrais, c’est à dire issus du même œuf. Et ce n’est pas injure leur faire que de dire que biologiquement parlant, les vrais jumeaux sont bien des clones ! Il y a quelques années, nous nous étions appuyé sur ces observations pour produire des jumeaux bovins par scission de blastocyste ; la technique s’est avérée très efficace puisque la moitié des vaches gestantes après transfert des deux demi embryons avaient donné naissance à des jumeaux ! Mais couper un blastocyste en quatre révéla vite son défaut, les quatre lots de cellules étant alors trop petits pour pouvoir chacun reformer un blastocyste capable ensuite de pouruivre son développement.
Le transfert de noyau consiste à placer au contact d'un ovule énucléé (sans chromosomes maternels) une cellule provenant d'un tissu déjà différencié, qui contient donc les deux stocks de chromosomes parentaux. En pratique on utilise des ovules provenant de femelles différentes dont on ne garde que le cytoplasme; ainsi, dans le cas de la vache, ces ovules peuvent être ponctionnées directement dans les follicules d’ovaires récupérés dans des abattoirs, ce qui permet de disposer très rapidement de plusieurs dizaines de cytoplasme receveurs pour les noyaux. On a recours à différents procédés pour s’assurer que le noyau de la cellule donneuse rentre dans l'ovule receveur. Une des étapes de cette opération minutieuse consiste à fusionner la membrane de la cellule donneuse de noyau avec celle de l’ovule. Pour cela on se sert d’une courte impulsion électrique qui ne dure que quelques microsecondes mais qui suffit pour déstabiliser très transitoirement les membranes et permettre à la fois leur fusion et l’activation de l’œuf, c’est à dire la mise en route de modifications chimiques qui conduiront à la réalisation de la première division. Le développement de "l'œuf reconstitué" peut alors commencer. Transplanté dans une mère porteuse, le veau obtenu sera génétiquement identique à la vache donneuse de noyau, qu'il s'agisse d’une cellule de glande mammaire, comme cela a été le cas pour Dolly en février 1997, ou de celui d’un muscle comme pour la vache Marguerite née à l’INRA en février 1998. Le rôle du cytoplasme de l’ovule mérite ici d’être souligné car c’est lui qui va réorganiser le noyau pour lui faire retrouver un état embryonnaire. Cet étonnant pouvoir est encore loin d’être compris : on sait seulement que l’ovule est une cellule tout à fait particulière qui contient plusieurs millions de molécules fabriquées au cours de l’ovogénèse, c’est à dire pendant cette longue période qui commence dés la vie fœtale de la femelle après que se soit différenciée la gonade. Ces molécules sont indispensables au contrôle des premières divisions de l’œuf car le noyau est à ce moment là incapable par lui-même de toute activité de synthèse. Il ne deviendra véritablement actif que progressivement et après que le cytoplasme de l’ovule l’ait profondément réorganisé. Ces premiers échanges entre le noyau et le cytoplasme sont déterminants pour la suite du développement. On commence à réaliser qu’ils peuvent affecter le fonctionnement de gènes qui ne s ‘expriment que plus tard au cours de l’embryogénèse et l’on soupçonne même que ces effets peuvent se faire sentir après la naissance ! En outre le cytoplasme de l’ovule est riche en ces organites cellulaires que sont les mitochondries qui jouent un rôle essentiel dans le contrôle du métabolisme cellulaire. Les mitochondries possèdent leur ADN propre qui ne sera utilisé qu’après plusieurs divisions, un peu avant le stade blastocyste,et en interaction avec l’ADN du noyau. Il faut donc qu’un “ dialogue ” constructif puisse s’établir rapidement entre le cytoplasme de l’ovule et le noyau donneur alors même que celui ci a en quelque sorte leurré le cytoplasme programmé chez les mammifères pour accueillir un spermatozoïde. Comprendre comment le noyau se trouve ainsi être dé-différencié en un noyau embryonnaire est la question fondamentale de biologie que pose le clonage
Technique, science :technoscience et clonage
Quelque soit l’espèce considérée, le rendement de la technique de transfert de noyaux est faible : un à trois pourcents seulement des embryons reconstitués se développement à terme alors qu’après fécondation in vitro, ce taux est d’environ 50%. Il est vrai que nous n'avons que très peu de recul, à peine trois ans, mais ce faible rendement est aussi un fait chez la grenouille où pendant de nombreuses années des chercheurs tentèrent, sans succès, d’obtenir un animal adulte (au delà du stade larvaire) à partir du noyau d’une cellule somatique elle même prélevée sur un autre adulte. Les données qui commencent à être publiées suggèrent que l’efficacité diminue quand le noyau provenant du même type cellulaire (par exemple un fibroblaste) est prélevé sur un animal adulte par rapport à un fœtus sans que l’on puisse dire pour l’instant si cette différence est due au fait qu’une plus grande partie des noyaux donneurs est porteuse d’anomalies génétiques après prélèvement chez l’adulte ou si il s’agit d’une moins grande aptitude à subir les remaniements imposés par le cytoplasme de l’ovule. Si on utilise des noyaux de cellules embryonnaires (prélevés juste avant l’implantation) l’efficacité est plus élevée et on peut obtenir (chez le bovin) en moyenne 10 veaux pour cent embryons reconstitués. Par contre l’âge de l’animal adulte semble peu affecter les résultats. Une autre observation est que dans tous les cas, et contrairement à ce qui se produit aussi bien dans les conditions de reproduction naturellles qu’après insémination artificielle ou fécondation in vitro, le taux d’avortements tardifs est élevé, un peu comme si le filtre que constitue l’implantation fonctionnait moins bien pour les embryons clonés. Les causes sont apparemment multiples et comme nous le verrons plus loin, pas seulement génétiques.
A ce jour, environ cent cinquante veaux clonés sont nés dans le monde, une quarantaine de moutons, moins de vingt chèvres, quelques porcs.. C’est peu au regard des cinq milliards de veaux nés par insémination artificielle depuis 1950, des deux millions nés après transfert d'embryons depuis 1975 ou des cent mille issus de fécondation in vitro depuis 1988 ! Curieusement, les premiers clones de souris n’ont été obtenus que près de deux ans après la naissance du mouton Dolly, et ceci malgré les nombreux efforts réalisés pendant près de vingt ans par plusieurs équipes. Ces échecs avaient fait considérer le clonage comme “ biologiquement impossible ” chez les mammifères ! Aujourd’hui, les succès avec cette espèce sont encore peu nombreux. Mais la situation pourraient changer: en jouant à la fois sur les conditions techniques de reconstitution de l’embryon et sur la composition du milieu de culture avant transfert dans une femelle receveuse nous venons de montrer que l’on pouvait obtenir un taux d’implantation élevé, et que c’était surtout la mortalité fœtale tardive qui était responsable du faible rendement. Les quelques souris obtenues sont par contre physiologiquement normales et peuvent se reproduire normalement.
Les clones commencent donc à naître régulièrement dans les laboratoires et ils forcent au constat suivant : un clone est un animal dont la généalogie brouille très vite les repères auxquels nous sommes habitués. Avec le clonage, un animal donneur de noyau peut avoir plusieurs clones d’âge différents dont peuvent être dérivés des clones de clones si l’opération de transfert de noyaux est répétée à partir de cellules prélevées sur un animal lui même issus de clonage. Un clone femelle peut avoir cinq mères : la “ mêre ” donneuse de noyau ; celle qui a donné le cytoplasme receveur ; la mère porteuse ; la mère qui l’allaite (nous avons fréquemment recours à cette mêre car les mêres porteuses que nous utilisons sont des vaches de la race charolaises moins bonne laitières que celles de la race Holstein) ; et… la mêre génétique, c’est à dire celle qui a donné naissance à la mêre donneuse de noyau en lui transmettant ses gènes ; il a dans tous les cas un pére, le père génétique, indispensable chez le mammifères où la parthénogénèse (c’est à dire le développement à terme d’un ovule activé sans fécondation), n’est pas possible. Si ce clone est un mâle, il a un deuxième père, le donneur du noyau et jusqu’à quatre mères. Quand aux clones de clones, leur grand-mère donneuse de noyaux est aussi leur soeur génétique (même père et même mère) et les autres membres du premier lot de clones sont à la fois leurs tantes (ou oncles) et leurs sœurs (ou frères). Nous venons, à des fins expérimentales de constituer une telle tribu de 10 vaches à l’INRA : définir un système d’identification pour ces animaux n’est pas une mince affaire !
Génèse, épigénèse : le clonage, un outil pour la recherche fondamentale
Le clonage est d’abord un nouvel outil pour l’une des grands thématiques de la recherche fondamentale : celle de la différenciation cellulaire. Au fur et à mesure que les tissus se forment, les cellules se spécialisent dans différentes fonctions ; dans de très nombreux tissus, on trouve des cellules qui en se divisant sont capables de donner à la fois une cellule identique à elle-mêmes et une autre cellule différenciées : ces cellules multipotentes sont aussi appelées cellules souches. La transformation d'une cellule souche en une cellule différenciée obéit à un mécanisme contrôlé qu'il convient de comprendre. En effet, le dérèglement de cette division reproduit ce qui se passe quand des cellules se mettent à proliférer de façon anarchique et à devenir cancéreuses. Comprendre avec le transfert de noyaux comment une cellule peut en quelque sorte revenir en arrière en modifiant le programme de développement qui l’avait faite passer de l’état d’œuf à celui de cellule différenciée devrait nous conduire à mieux cerner les conditions qui engagent une cellule à devenir tumorale. Avec le transfert de noyaux, la cellule fusionnée avec le cytoplasme de l’ovule retrouve un état totipotent, c’est à dire un état qui lui permet, à elle toute seule, de redonner toutes les cellules de l’organisme. Cet état redonne une vigueur nouvelle aux cellules. C’est ce que montre l’expérience suivante réalisée récemment chez la vache. Elle consiste, dans un premier temps, à mettre en culture des cellules prélevées sur un animal, par exemple des fibroblastes qui se divisent un certain nombre de fois, environ 30 à 50 , avant de rentrer dans un état de sénéscence ; dans un deuxième temps, on produit par clonage un fœtus à partir du noyau de ces cellules et on met à nouveau des fibroblastes en culture : on constate que ceux ci peuvent alors à nouveau se diviser autant de fois que lors de la première culture; et peut être même plus !
Cette jouvence cellulaire observée en culture a éveillé le fantasme d’immortalité qu’évoque le clonage alors que quelques mois auparavant, mais en sens opposé, on affirmait que Dolly vieillissait plus vite que son âge parce que certaines régions de ses chromosomes, les extrémités ou télomères (qui jouent un rôle clé pour maintenir normal le nombre de chromosomes à chaque division), étaient plus semblables à celles de l’animal donneur de noyaux agé de six ans qu’à celle d’un animal de deux ans ! Dans les deux cas, c’est extrapoler rapidement de la cellule en culture à l’animal vivant, en oubliant d’intégrer toute la complexité des régulations qui permettent à un organisme complexe d’exister : on a sans doute plus l’âge de ses artères que celui de ses télomères, et Dolly et les autres clones ont bien l’âge physiologique qui correspond à leur naissance! Seuls quelques type cellulaires ont à ce jour été utilisés comme source de noyaux. Et aucun d’entre eux ne correspondaient à des cellules ayant atteint un stade de différenciation terminal in vivo. L’étude des remaniements du noyau de ces cellules après clonage serait pourtant très précieux pour comprendre comment l’environnement cellulaire peut dicter à une cellule les conditions qui aboutissent à son engagement dans une fonction spécialisée, comme c’est le cas par exemple pour les cellules neuronales ou bien les kératinocytes qui forment la surface de notre peau.
Le clonage permet aussi d’aborder de nouvelles questions fondamentales. C’est le cas par exemple pour celle qui concerne le rôle important et jusqu’à une date récente ignoré, de l’environnement de l’embryon sur le développement fœtal et celui du jeune après la naissance. L'environnement est pris ici dans un sens très large puisqu'il peut s'agir de l'environnement du noyau avec le cytoplasme de l'ovule, de l'environnement de l'embryon cloné avec son milieu de culture ou celui que constitue l'environnement utérin au cours de la vie fœtale. Le clonage révèle que cette épigénèse, c’est à dire l'ensemble des mécanismes qui se surimposent à ceux déterminés par l'ADN et qui influencent un caractère, est de fait à l’oeuvre dès les premiers stades du développement. L’effet à long terme de l’environnement sur l’activité du noyau s’est manifestée de façon spectaculaire avec deux de nos clones bovins, dont l’un était la vache Marguerite, née tout à fait normalement après clonage somatique. Deux mois après leur naissance, soit au moment du sevrage, ces animaux n’ont pu activer leur système immunitaire et sont morts en quelques jours d’une infection généralisée avec gangrène fulgurante ; l’autopsie révélera que toutes les fonctions s’étaient développées normalement à l’exception de la fonction immunitaire, le thymus n’étant pas devenu mature. Aucune anomalie génétique ne put être décelée sur les tissus, et nous pûmes conclure que ce déréglement physiologique trouvait son origine dans le transfert de noyau qui n’avait pourtant pas empéché la mise en place des autres fonctions de l’organisme. D’autres manifestations tardives du clonage commencent maintenant à être documentées : les clones issus de cellules somatiques différenciées sont, à la naissance, en moyenne plus lourds que les veaux nés après insémination artificielle (6 kg en moyenne), et 20 à 30 % d’entre eux ont un surpoids de 10 à 25 kg avec des manifestations de type diabétique et des anomalies cardio-vasculaires. Ces dysfonctionnements semblent résulter du fait que, par rapport aux fœtus normaux, les fœtus clonés ont une croissance qui semble se synchroniser plus difficilement avec les variations d’apports nutritifs du milieu utérin. Ces désynchronisations sont aussi observées après reproduction normale, mais avec un fréquence faible, quand l’alimentation de la mère est mal adaptée aux besoins du fœtus. Les clones bovins se révèlent être des bons modèles pour mieux comprendre l’origine fœtale (et non seulement génétique) de physiopathologies prévalentes dans notre propre espèce
Parce qu’il procède à la fois d’une dissociation entre noyau et cytoplasme et d’une multiplication d’organismes génétiquement identiques, le clonage rend aussi possible l’étude du rôle spécifique des gènes nucléaires dans la genèse et la réalisation de caractères complexes comme la résistance à des maladies, le comportement ou le vieillissement. . Disposer de plusieurs animaux génétiquement identiques permet donc de mieux distinguer dans les caractères d'un animal ce qui est dû à ses gènes de ce qui est dû à l'environnement; en d'autres termes, quelle est la part de l'inné et celle de l'acquis. Le clonage devrait aussi permettre de définir l’importance de l’héritage mitochondrial maternel et de connaître les fonctions qu’exerce le cytoplasme de l’ovule au cours du développement. Plusieurs expériences montrent clairement que la fusion entre une cellule somatique d’une espèce et le cytoplasme d’un ovule énuclée d’une autre espèce permet de reconstituer un embryon capable de se différencier en blastocyste. Des lignées de cellules embryonnaires ont même pu être établies après mise en culture d’ embryons chimères mouton/vache, ou singe/vache ! Savoir si de tels embryons peuvent s’implanter ou non, c’est mieux comprendre ce qui fait la spécificité d’une espèce et découvrir que certaines combinaisons nucléo cytoplasmiques seront peut être tout à fait viables .
Semblables, différents : à quoi serviront les clones ?
Les premières applications du clonage vont concerner non pas tant l’obtention de lots d’animaux domestiques génétiquement identiques, avec la menace d’un appauvrissement des populations animales que certains ont tout de suite évoqué à l’annonce de la naissance du mouton Dolly, que l’utilisation et l’aide au maintien… de la diversité génétique. Le paradoxe n’est qu’apparent et il montre en tout cas que les premières craintes n’étaient pas les plus justifiées.
La première perspective du clonage est de devenir un outil pour la transgénèse animale. Il y a deux raisons à cela. La première concerne l'efficacité de la transgénèse. Des premiers succès obtenus chez la brebis, la chèvre ou la vache montrent l'avantage du transfert de noyaux par rapport à la microinjection d'ADN directement dans l'oeuf (au stade une cellule). Cette technique est utilisée depuis plusieurs années pour obtenir l'intégration d'une séquence d'ADN étranger dans un noyau hôte. La transgénèse permet de produire des molécules complexes en utilisant ce biotransformateur performant qu'est la mamelle et les nombreuses possibilités de cette approche seront développées dans la conférence de L.M.Houdebine. Le clonage devrait donc contribuer à réduire le coût de production de molécules complexes d'intérêt pharmaceutique pour obtenir des molécules à haute valeur ajoutée (comme par exemple le facteur IX qui intervient dans le processus de coagulation du sang), ou des anticorps qui pourraient alors être utilisés beaucoup plus largement à des fins de diagnostics. C‘est ce que démontre le veau ” Lucifer ”, né en juillet 1998 à l’INRA. Dans cette expérience, on a comparé l’efficacité de la microinjection d’un transgène avec celle du transfert de noyaux de cellules somatiques transgéniques . Il nous a fallu injecter plus de 2100 embryons de stade “ une cellule ” pour obtenir un fœtus transgénique alors que le transfert de 20 blastocystes, obtenus à partir de seulement 175 embryons reconstitués chacun avec un noyau transgénique, a suffi pour obtenir “ Lucifer ” avec un coût trois à cinq fois plus faible que pour la microinjection. Ce veau est porteur d’un gène semblable à celui qui chez le ver luisant, produit de la lumière : la luciférase. On a fait en sorte que le gène s’exprime dans toutes les cellules, mais seulement après un stress. On dispose ainsi d’un animal modèle chez lequel on peut mesurer très finement l'état de stress et ceci par une méthode non invasive puisqu'il suffit de prélever quelques cellules de la muqueuse buccale par exemple pour faire le test.
La seconde raison tient au fait que l'on peut envisager, dans un avenir sans doute proche, d'utiliser le clonage pour garantir le bon fonctionnement du transgène. A ce jour, son intégration après microinjection ou après transfection des cellules donneuses de noyaux se fait au hasard, et le plus souvent sous forme de copies multiples. Ces intégrations non contrôlées affectent fréquemment le patron d'expression de l'ADN étranger et compromettent les longs efforts requis pour produire les animaux. Elles contribuent à l'augmentation de la fréquence d'apparition de troubles physiologiques, une situation que le respect dû au bien être des animaux d'élevage ne peut tolérer. Or, le fait de pouvoir disposer d'un grand nombre de cellules en culture permet de recourir à des stratégies moléculaires pour cibler l'intégration du transgène dans un endroit préalablement choisi du génome, par exemple une région où l'environnement chromatinien favorisera un niveau élevé de son activité. Le clonage devient alors un enjeu pour obtenir directement ces animaux transgéniques en utilisant des cellules donneuses de noyaux où les séquences du transgène se sont recombinées à des séquences endogènes préalablement choisies. Compte tenu du grand nombre de divisions nécessaires pour sélectionner ces rares événements de recombinaison, l'obtention de lignées de cellules totipotentes qui peuvent être maintenues pendant très longtemps en division active in vitro sera sans doute requise. Ces cellules n'existent à ce jour que chez la souris.
Une exigence supplémentaire, au moins pour les espèces domestiques, sera d'éliminer toute séquence d'ADN utilisée pour trier les cellules où s'est produit la recombinaison homologue entre les séquences endogènes visées et le transgène. Plusieurs technologies récentes devraient permettre de débarrasser ainsi les noyaux donneurs de ces auxiliaires de fabrication que sont les gènse de résistance aux antibiotiques, ou les gène rapporteur du fonctionnement effectif du transgéne. Plus question donc, avec l’animal, de produire des organismes génétiquement modifiés par bricolage comme cela a été le cas avec les plantes. L’objectif de la recherche est une transgénèse propre qui ne fera que substituer par exemple un allèle à un autre. Les applications du clonage chez l'animal conduiront donc en pratique à développer les technologies de transgénèse, pour façonner directement les animaux d'élevage et non seulement pour mieux sélectionner les meilleurs à partir de lots d'animaux de méme génotype. Dans un premier temps, il est probable que la recombinaison homologue entre l'ADN exogène et des séquences endogènes sera utilisée pour des applications médicales, comme par exemple la création d'animaux immunocompatibles avec l'homme (le porc) et pour tenter de rendre effective la pratique des xénotransplantations. A plus long terme, c’est une véritable ingéniérie des animaux domestiques qui pourrait voir le jour et rendre plus rapide les méthodes classiques de la sélection animale. Le clonage devrait aussi aboutir à l'établissement de nouveaux modèles animaux tant pour approfondir nos connaissances sur les régulations des principales fonctions de l'organisme que pour étudier des maladies pour lesquelles le recours à la souris comme modèle s'est avéré décevant.
Mais le clonage a commencé aussi à être utilisé pour maintenir des génotypes animaux exceptionnels. Les Néo-zélandais par exemple viennent d’obtenir plusieurs veaux clonés à partir d'une cellule prélevée sur une vache de dix-sept ans, une des rares survivantes d'un troupeau qui s'était adapté au climat très rigoureux d’une ile du sud du pays. Les Japonais ont aussi cloné un taureau de vingt trois ans, un âge canonique chez cette espèce. Dans les deux cas, ces clones ont pu se reproduire tout à fait normalement permettant ainsi d’ introduire ces génotypes d’intérèt dans les schémas classiques de la sélection animale. Avec un collègue généticien de l’INRA, nous avons montré qu’il suffit de disposer d’environ 5,ou tout au plus 10 clones d’un animal d’intérèt pour accéder, à partir de mesures faites sur les clones eux mêmes ou sur leurs descendants, à une connaissance à la fois plus précise et plus rapide de la valeur génétique de l’animal.
L’animal, l’homme : clonage reproductif et clonage thérapeutique
Avec les exemples présentés ci-dessus, l’objectif est d’obtenir la naissance de clones après transfert, dans une femelle porteuse, d’embryons reconstitués avec des noyaux somatiques prélevés sur un organisme adulte: c’est ce que l’on appelle le clonage reproductif. Mais on peut aussi envisager de ne pas transplanter les embryons reconstitués et de les cultiver pour obtenir des lignées de cellules multipotentes embryonnaires ou différenciées qui auront les mêmes caractéristiques génétiques que celles du donneur : c’est ce que l’on appelle le clonage thérapeutique ou aussi le clonage non reproductif.. Cette distinction, établie par le Comité Consultatif National d’Ethique dès 1997 est essentielle pour comprendre comment le clonage pourrait être appliqué à l’homme.
A ce jour, il existe dans le monde entier un très large mouvement pour interdire le clonage reproductif humain. Il y a deux ans, dix-neuf pays européens ont signé un protocole dans ce sens. Bien sûr, on peut toujours justifier le recours pour l’homme au clonage reproductif. : il permettrait par exemple d’augmenter les chances de grossesse lorsqu’un seul embryon a pu être obtenu in vitro, ou de perpétuer le lignage biologique en cas de procréation impossible. Mais de telles pratiques, techniquement possibles, ouvriraient la voie à la reproduction par clonage d’un enfant sur le point de mourir, à celle d’un être cher ou d’une personne “exceptionnelle”, sans parler du fantasme de faire naître plusieurs enfants génétiquement identiques. Le clonage reproductif apparaît alors comme une inadmissible instrumentalisation de la personne humaine, une atteinte dégradante à sa dignité. Il suscite aujourd’hui la prise de conscience quasi unanime de la nécessité d’un accord international visant à une interdiction. L’énoncé d’un tel accord marquerait une nouvelle avancée de la démarche éthique dans l’accompagnement et le contrôle de l’avancée des connaissances scientifiques.
Le clonage thérapeutique par contre vise une utilisation très différente du transfert de noyaux: celle qui ouvre la voie à de nouvelles formes d'autogreffes. L'annonce aux USA de premiers succès dans l'isolement de lignées de cellules totipotentes établies à partir de la culture de blastocystes humains surnuméraires donnés à la recherche par des couples de patients (engagés dans un programme de procréation médicalement assitée) a considérablement renforcé l’intérèt pour cette approche. L’idée est de produire, par transfert de noyaux, un blastocyste à partir par exemple de cellules donneuses prélevées par biopsie sur un patient atteint de leucémie, puis de cultiver les cellules de cet embryon et dériver différents types cellulaires dont des cellules précurseurs du lignage hématopoïétique ; ces cellules pourront alors être, sans danger de rejet, réintroduites dans la moelle osseuse du malade après avoir éventuellement été modifiées génétiquement pour les rendre saines.
La mise en oeuvre effective du clonage thérapeutique nécessitera encore beaucoup de recherches avant de pouvoir devenir réalité mais elle est promise à de très nombreuses applications médicales, notamment pour les maladies neurodégénératives. Cette forme de clonage pourrait à son tour n’être qu’une étape transitoire de la recherche. En effet, on s’est aperçu récemment que des cellules souches isolées à partir de tissus spécialisés, tissus nerveux, sanguins ou musculaires, peuvent voir leur destin réorienté quand on modifie directement leur environnement in vitro sans faire pour autant appel au transfert de noyaux : en plaçant par exemple des cellules nerveuses dans la circulation sanguine de souris, ces cellules acquièrent un phénotype de cellules sanguines. Les mécanismes de cette transdétermination dont semblent capables plusieurs types de cellules somatiques sont encore peu compris. Mais ces derniers résultats nous placent de fait devant un véritable débat éthique que l’on peut formuler en deux questions :
Pour établir des lignées de cellules embryonnaires humaines multipotentes à partir de noyaux de cellules somatiques, il faut d’abord définir les conditions de culture qui permettront de dériver des lignées de cellules à partir de blastocyte. En France, ceci est impossible, car toute recherche , même sur les embryons surnuméraires des programmes de procréation médicalement assistée, est interdite par la loi de Bioéthique de 1994. Mais cette loi doit être prochainement révisée. D’où la première question posée au législateur : faut il, en prenant en compte les nouvelles données de la recherche, continuer à interdire ou au contraire autoriser la mise en culture de ces embryons surnuméraires, avec bien sûr un contrôle approprié ? Pour réaliser le clonage thérapeutique, il faut reconstituer des embryons donc créer des embryons humains, à partir d’ovules humains, pour les besoins de la recherche. En France, comme dans de nombreux pays, cette création “ d’êtres humains potentiels ” pour reprendre l’expression proposée par le Comité Consultatif National d’Ethique pour définir le statut de l’embryon humain, est interdite. D’où la deuxième question, sans doute plus difficile : peut on autoriser, même transitoirement la création d’embryons humains pour la recherche? Interdire, autoriser : le clonage thérapeutique appelle une exigence supplémentaire : celle d’apprendre à mesurer à leur juste valeur les avancées très rapides de ce monde des technosciences auquel appartient le clonage. Entre un rejet global et une défense aveugle, suivre une ligne de crête sans doute plus courageuse : celle le long de laquelle il faut , en temps voulu, décider d’avancer ou de faire marche arrière. Contre la peur, une telle démarche devient un acte de sagesse.
Conclusion
En moins de trois ans, le clonage animal est devenu à part entière un outil pour la recherche fondamentale. Il aide à mieux comprendre les mécanismes de la différentiation cellulaire et la nature moléculaire de la grande plasticité fonctionnelle du génome de nos cellules. Il montre aussi que nous ne sommes pas que le produit de nos gènes et devrait permettre de mieux comprendre comment, chez les mammifères, l’environnement de l’embryon modèle son destin. Associé à la transgenèse, le clonage permettra de façonner l'animal et d’engager une véritable ingéniérie de leur génome.
Là, science et applications avancent déjà de paire, côtoyant le marché pour qui le vivant est avant tout une activité minière. Là, les esprits curieux qui voudraient connaître la complexité de l’ontogénèse rencontrent les téméraires pour qui science et techniques sont aussi des instruments de puissance de l’homme sur le vivant. Là se dessinent de nouvelles utilisations de l’animal qui pourraient redéfinir les contours de notre représentation de l’homme.
Avec le clonage, l’activité scientifique semble se confronter aux plus forts de nos mythes fondateurs : celui de l’immortalité avec ses pactes qui confèrent une éternelle jeunesse ; celui du pouvoir qui rapproche des dieux façonnant les êtres vivants de notre entourage ; celui enfin du double et donc de l’indifférenciation qui conduit au crime. Les chimères modernes semblent prêtes à sortir des laboratoires et la peur mais aussi la fascination qu’excerce le clonage animal se lisent à longueur de médias. Mais être partagé entre l’attrait et l’effroi, n’est ce pas en définitive ce qui accompagne notre regard quand nous le portons sur cette terre irremplaçable pour mieux en ressentir la beauté ” !.
VIDEO canal U LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 ] Précédente - Suivante |
|
|
|
|
|
|