ecole de musique piano
     
menu
 
 
 
 
 
 

THÉORIE DE L'ÉVOLUTION

 

 


 

 

 

 

 

saut évolutif

La théorie de l'évolution des espèces dite théorie néodarwinienne, qui est reconnue comme la théorie aujourd'hui dominante dans la communauté scientifique, fut fondée officiellement en 1947, lors du congrès de Princeton, aux États-Unis. À la fin des années 1990, une autre autre synthèse évolutionniste est en train de se forger, prenant à la fois en compte les données de la paléontologie relatives aux « équilibres ponctués », celles de la génétique du développement et celles de la génétique de la spéciation. Cette théorie repose fondamentalement sur la notion d'évolution discontinue, par « sauts évolutifs ».

Les monstres prometteurs
La théorie néodarwinienne de 1947, souvent également qualifiée de « théorie synthétique de l'évolution », dans la mesure où elle représente la synthèse des données de la génétique des populations, de la systématique (identification et délimitation des espèces dans la nature) et de la paléontologie, a pour principaux fondateurs le généticien russe émigré aux États-Unis Theodosius Dobzhansky, le systématicien allemand émigré aux États-Unis Ernst Mayr et le paléontologiste américain George Simpson. Elle fut élaborée en opposition à une autre théorie de l'évolution défendue dans les années 1940 par un généticien allemand réputé, lui aussi émigré aux États-Unis, Richard Goldschmidt. Celui-ci soutenait que les phénomènes génétiques responsables de la naissance des espèces sont différents de ceux qui ont lieu continuellement dans les populations : ces derniers sont représentés par des mutations génétiques aléatoires (ou micromutations), responsables de l'apparition continuelle de nouvelles variantes des gènes. Selon la thèse défendue par Dobzhansky, Mayr et Simpson, en effet, l'évolution consiste fondamentalement, au sein des populations composant une espèce, en un processus de remplacement de variantes de gènes données par de nouvelles variantes de ces mêmes gènes. Autrement dit, la formation d'une nouvelle espèce, selon cette façon de voir, s'opère par le biais d'un processus continu conférant à une population donnée, au sein d'une espèce, le statut de race nouvelle, puis de sous-espèce, ensuite d'espèce nouvelle dite « jumelle » de l'espèce-souche (car encore indistinguable d'elle à l'œil nu) et, enfin, d'espèce nouvelle avérée, parfaitement distincte morphologiquement de l'espèce-souche.


La théorie néodarwinienne admet que, pour chacun de ces stades successifs de la formation d'une nouvelle espèce, au sein du patrimoine génétique de la population considérée, les nouvelles variantes (qui remplacent des variantes antérieures) figurent dans une proportion de plus en plus grande. Dans les années 1940, la réalité de ce processus n'était attestée que de façon indirecte par le recoupement d'observations provenant de différentes sources. Ce n'est que dans les années 1970 que Th. Dobzhansky et ses collaborateurs (tel le généticien américain Francisco Ayala) ont effectivement prouvé directement, par exemple : d'une part, que la mouche drosophile d'Amérique du Sud Drosophila willistoni a bien donné naissance à une espèce distincte par le biais du processus continu évoqué ci-dessus (différenciation en race, sous-espèce, espèce jumelle et espèce morphologiquement distincte) ; d'autre part, qu'au cours de ce processus le taux de remplacement des gènes par de nouvelles variantes a été de 3 % au niveau de la race, de 23 % au niveau de la sous-espèce, de 58 % au niveau de l'espèce jumelle et de 100 % au niveau de l'espèce morphologiquement distincte.
Mais, de son côté, Richard Goldschmidt avait soutenu un point de vue différent, dans le courant des années 1940, dans son ouvrage The Material Basis of Evolution. Il y estimait que si l'on pouvait, certes, identifier au sein des espèces des races et des sous-espèces, elles ne représentaient pas les premiers stades de la naissance de nouvelles espèces. Celles-ci, selon lui, se forment bien à partir d'espèces-souches, mais par un processus différent, consistant en un remodelage de la morphologie, dû à des mutations particulières affectant le programme de développement : par exemple, par l'allongement ou le raccourcissement de la colonne vertébrale ou des membres, chez les vertébrés : ou par l'apparition ou la disparition brusque d'organes (comme les ailes chez les insectes)… Selon Goldschmidt, ces remodelages se produisent très tôt dans le développement et sont le résultat de mutations spéciales (qu'il appelle « mutations systémiques »), différentes des micromutations qui se produisent dans les populations pour donner des races ou des sous-espèces. Des animaux d'un nouveau type surgissent directement de ce processus de remodelage, et R. Goldschmidt les appela des « monstres prometteurs » (dénomination issue de l'observation inverse, selon laquelle, le plus souvent, les mutations qui changent considérablement la morphologie des individus à la naissance donnent plutôt des monstres non viables, par exemple le mouton à cinq pattes). Cependant, le généticien germano-américain eut du mal à prouver l'existence des monstres prometteurs et des mutations spéciales du développement, et sa théorie sombra dans l'oubli, dans la mesure où elle fut totalement supplantée par la théorie de Dobzhansky-Mayr-Simpson.

Les équilibres ponctués
Pourtant, dans les années 1970, divers généticiens sont revenus sur la question de la naissance des nouvelles espèces en se demandant si ce phénomène ne dépendait pas, dans certains cas, de phénomènes spéciaux (même si, dans d'autres cas, comme celui des drosophiles d'Amérique du Sud, le mécanisme est bien celui du phénomène graduel invoqué par la théorie néodarwinienne). Par exemple, le généticien britannique A.R. Templeton a suivi, en laboratoire, le devenir d'une petite population d'une mouche hawaiienne, Drosophila mercantorum, élevée dans les conditions préludant à la formation de nouvelles espèces : il a observé l'apparition d'un certain nombre de types inhabituels, comme le mutant baptisé « Abnormal abdomen », caractérisé par de nombreux changements simultanés de la morphologie (aspect anormal de l'abdomen) et de la biologie (longévité diminuée, mais fécondité plus élevée).

Certaines observations des paléontologistes, dans les années 1970 et 1980, peuvent également appuyer cette thèse. Par exemple, l'Américain P.G. Williamson a observé en 1981 de nombreuses espèces d'escargots fossiles se succédant dans les strates géologiques proches du lac Turkana, en Afrique de l'Est. Leur mode d'évolution se conformait à celui qui avait été découvert et appelé « modèle d'évolution par équilibres ponctués », en 1972, par les paléontologistes américains Stephen Jay Gould et Niles Eldredge. Autrement dit, chaque espèce donnée persistait pratiquement sans changement pendant quelques millions d'années, puis laissait brusquement place, à l'issue d'une phase de transition rapide, à une espèce nouvelle qui allait ensuite à son tour persister pendant de nombreux millions d'années. Or, P.G. Williamson a remarqué que, pendant les phases de transition rapide, des individus aberrants apparaissent souvent. À la suite de vastes polémiques, un consensus au sein de la communauté internationale des paléontologistes s'est établi, au cours des années 1990, pour admettre que les deux processus - évolution par équilibres ponctués et évolution graduelle continue - se rencontrent dans les archives paléontologiques (ce dernier modèle transposant dans les strates géologiques le processus de formation progressive des nouvelles espèces à partir d'espèces-souches). Toutefois, à la suite notamment des travaux d'Alan H. Cheetham, un ancien collaborateur de G.G. Simpson, sur les bryozoaires, la communauté internationale des paléontologistes a même admis que, lorsque les études sont menées avec suffisamment de rigueur, c'est le modèle d'évolution par équilibres ponctués qui l'emporte le plus souvent sur le modèle de l'évolution graduelle et continue au sein des archives géologiques.

Ainsi, la phase de stabilité des espèces, reconnue par le modèle des équilibres ponctués, est bien attestée dans les archives géologiques. Mais la phase de transition rapide est beaucoup moins facile à observer, précisément puisque, étant de courte durée, elle n'a que peu de chances de laisser des traces sous forme de fossiles. C'est donc par des déductions indirectes que peut être établie l'existence dans l'histoire évolutive des espèces de ces phases de transition rapide, accompagnées de changements morphologiques importants. L'une de ces déductions se fonde, par exemple, sur l'observation selon laquelle les mammifères ont, dans leur ensemble, connu une évolution rapide et de grande ampleur de leur morphologie dans les temps géologiques, alors que leurs protéines n'ont subi que peu de changements durant le même temps. Or, les changements évolutifs chez les protéines dépendent des micromutations classiquement envisagées dans la théorie néodarwinienne. En revanche, les changements dans la morphologie sont attribuables à des mutations des gènes de régulation du développement embryonnaire, autrement dit des gènes contrôlant le déroulement du programme génétique au cours du développement précoce de l'organisme. En fait, c'est même la biologie évolutive de l'espèce humaine qui offre les meilleurs arguments dans ce sens : la comparaison de la totalité de notre ADN (acide désoxyribonucléique, molécule formant le substrat du patrimoine génétique) avec la totalité de l'ADN de l'espèce zoologiquement la plus proche, le chimpanzé, montre que, à ce niveau moléculaire fondamental, la différence entre l'homme et le singe est de 1,6 %. Or, il est évident que nous différons sur le plan morphologique au point qu'un zoologiste extraterrestre ne pourrait pas nous prendre pour des espèces « jumelles ». D'où la conclusion admise par la plupart des biologistes : la naissance de la lignée humaine issue d'un ancêtre de type « grand singe » a vraisemblablement été liée à des changements génétiques ayant affecté les gènes de régulation du développement morphologique au cours de la vie embryonnaire.

La génétique des sauts évolutifs
À la fin de l'année 1998, deux généticiennes américaines, Suzanne L. Rutherford et Susan Lindquist, de l'université de Chicago, ont publié des résultats apportant pour la première fois la preuve que des changements de morphologie peuvent se réaliser avec rapidité d'une génération à l'autre par des mécanismes génétiques différant complètement de ceux postulés par la théorie néodarwinienne. Elles ont observé que des mouches drosophiles touchées par une mutation dans un gène particulier, appelé Hsp90, présentent des anomalies telles que pattes déformées, ailes de petites dimensions, yeux colorés en noir ou absents, etc. La fréquence d'apparition de ces mouches souffrant de difformités était d'abord faible : de 1 à 3 % de la population dans la première génération. Dans la mesure où, tels des « monstres prometteurs », elles étaient néanmoins capables de se reproduire, les chercheuses ont procédé à des croisements sélectifs des mouches difformes. De cette façon, en un petit nombre de générations, la malformation des yeux, par exemple, a concerné près de 90 % de la population (le nombre des gènes concourant à l'émergence de malformations de ce type étant de l'ordre d'une demi-douzaine, le même résultat n'aurait pas pu être facilement obtenu par le processus classique de la sélection cumulative des micromutations). Plus étonnant encore : les chercheuses ont montré que l'effet de la mutation de Hsp90, c'est-à-dire l'apparition de mouches monstrueuses, ne se fait souvent sentir que dans des conditions environnementales anormales (comme l'élévation de la température ambiante jusqu'à 30 °C). Elles ont alors expliqué la modification rapide des caractères morphologiques chez les drosophiles de la manière suivante.

Normalement, le gène Hsp90 détermine la présence dans les cellules d'une protéine dite « de choc thermique » (le sigle « HSP » correspond aux initiales de heat shock protein, « protéine de choc thermique »). Cette protéine particulière a pour rôle, à l'état normal, de restaurer la forme et, par suite, la fonction des protéines endommagées par des mutations génétiques ou par l'agitation thermique. Supposons que la forme donnée d'un organe (qu'il s'agisse ou non d'une malformation) dépende de la mutation combinée de 6 protéines : cette forme n'apparaîtra pas tant que la protéine Hsp90 est à l'état normal dans la cellule car, même si les mutations des gènes correspondant à ces 6 protéines sont bien présentes, la protéine Hsp90 les empêchera de se manifester. Mais, lorsque la protéine mute, elle ne joue plus son rôle de restauratrice des fonctions protéiques endommagées, surtout lorsque les conditions environnementales de stress mobilisent le peu qui lui reste encore de ses capacités restauratrices. Dès lors, les mutations en question vont pouvoir se manifester et la forme de l'organe en question va brusquement changer. Autrement dit, ce type de mécanisme génétique responsable des changements de la morphologie des organismes a pour caractéristique d'accumuler « en secret » les mutations nécessaires, puis de les démasquer brusquement, notamment lorsque certaines conditions d'environnement particulières sont réunies. Plus d'un demi-siècle après sa conception, la théorie de R. Goldschmidt reçoit donc un début de confirmation, tandis que celle des équilibres ponctués de S.J. Gould et N. Eldredge trouve enfin la base génétique qui lui manquait pour expliquer les phases rapides de naissance des espèces.

 

 DOCUMENT   larousse.fr    LIEN

 

 
 
 
 

CLONAGE REPRODUCTIF, CLONAGE THÉRAPEUTIQUE

 

 

 

 

 

 

 

CLONAGE REPRODUCTIF, CLONAGE THÉRAPEUTIQUE


Depuis l'annonce, en 1997 de la naissance du mouton Dolly, on a pu obtenir - chez quatre espèces, le mouton, la vache, la chèvre et la souris - des jeunes par clonage de cellules prélevées sur des animaux adultes. L'efficacité de la technique reste encore faible. Le taux élevé de mortalité périnatale et foetale tardive, environ 40% des gestations établies, traduit l'existence d'effets épigénétiques à long terme induits par les perturbations précoces de l'environnement du noyau zygotique. Le clonage doit aujourd'hui être considéré, avant tout, comme une voie de recherche pour l'étude de la plasticité fonctionnelle du noyau des cellules différenciées. La maîtrise du clonage animal offrirait de nombreuses perspectives d'applications pour l'expérimentation animale, et aussi l'obtention d'animaux transgéniques issus de noyaux modifiés lors de la culture des cellules donneuses. Le non recours au clonage reproductif s'impose aujourd'hui chez l'homme, non seulement par simple précaution - compte tenu des cas de syndromes létaux observés chez les animaux clonés - mais aussi pour des raisons éthiques. L'obtention à partir de blastocystes humains issus du clonage, de cellules embryonnaires multipoptentes qui seraient ensuite différenciées en culture ouvrirait la voie au développement des autogreffes pour corriger des défauts tissulaires. Ce clonage dit thérapeutique et impliquant l'utilisation de très jeunes embryons à des fins de recherche, n'est toutefois pas prêt de devenir réalité.

Texte de la 28ème conférence de l'Université de tous les savoirs réalisée le 28 janvier 2000 par Jean-Paul Renard
Le Clonage
La naissance du mouton Dolly "a fait la une" dans les médias du monde entier. Chez cette brebis, le noyau qui contient son patrimoine génétique a été prélevé de la glande mammaire d'une de ses congénères. Il a ensuite été transplanté dans un ovule prélevé sur une autre brebis, ovule dont on avait préalablement retiré le matériel génétique, c'est à dire les chromosomes maternels. Preuve était faite que même les mammifères peuvent se reproduire par une autre voie que la voie sexuée ! D'où la grande inquiétude : serait-il possible de faire chez l'homme ce que l'on a fait chez l'animal ?

Qu'est-ce qu'un clone ?
Un clone est un ensemble d'organismes génétiquement identiques.. Il est possible de cloner des molécules, des cellules ou des êtres vivants, qu'il s'agisse de micro-organismes, de végétaux ou d'animaux. Le clonage est un mode de reproduction naturel chez de nombreuses espèces. Ainsi, les bactéries peuvent se reproduire par scissiparité, les plantes par bouturage ou marcottage, et de nombreux invertébrés (abeille, puceron, daphnies) par parthénogenèse.
Dans tous les cas et contrairement à une idée répandue, le clone au sens de copie conforme n'existe pas en biologie : car même s’ils sont génétiquement identiques, deux organismes vivants manifesteront très vite des différences dues au fait que l’environnement vient moduler l’action des gènes.
Telle était la définition du clone avant l’annonce de la naissance du mouton Dolly. Depuis, la publicité que lui a consacré la revue scientifique “ Nature ” a fait évoluer l’usage de ce mot: il sert maintenant le plus souvent à désigner un animal, fut il unique, obtenu à partir du noyau d’une cellule non reproductrice, c’est à dire d’une cellule somatique, prélevée sur un animal adulte. Dolly était unique puisque l’animal sur le quel avait été prise la cellule donneuse de noyau, cellule qui avait été cultivée puis conservée à l’état congelé, était mort bien avant la naissance du fameux mouton. Mais Dolly fut appelée “ clone ”. Depuis, d’autres mammifères clonés ont vu le jour, notamment des veaux et plus récemment des souris, quelques chèvres et quelques porcs. Depuis deux ans, nous avons produit quelques souris et une douzaine de veaux clonés de la race Holstein au laboratoire de l’INRA de Jouy-en-Josas. Certains de ces veaux sont issus de noyaux provenant du même animal donneur et sont donc bien génétiquement identiques. Pourtant la répartition des taches noires et blanches de leur pelage diffère d’un individu à l’autre ; placés au milieu d’autres veaux non clonés, on a quelques difficultés à les reconnaître ; si on les observe plus attentivement , on constate par exemple que leur comportement alimentaire est en certains points très semblable, mais en d’autres très différents.. On est loin de la vision simpliste du clonage comme ” photocopieuse ”.

Les voies du clonage
Trois techniques très différentes permettent d'obtenir des animaux génétiquement identiques : la dissociation, la section ou le transfert de noyaux.
La dissociation consiste à prendre les cellules d'un tout jeune "embryon". Le mot embryon est utilisé ici comme un nom générique désignant les premiers stades du développement depuis le stade “ une cellule ”, c’est à dire celui de l'œuf fécondé, jusqu’au stade blastocyste à partir duquel se réalise l’implantation dans l’utérus de la mère. Au delà commence le développement du fœtus, même si souvent on réserve l’usage de ce mot à la période plus tardive à partir de laquelle apparaît une forme organisée (avec une partie antérieure et une partie postérieure) qui prendra ensuite un aspect caractéristique de l’espèce concernée. Pour obtenir un clone par dissociation, il faut partir des cellules issues soit de la première (deux cellules), de la deuxième (quatre cellules), ou, tout au plus, de la troisième (huit cellules) division de l’œuf. En les replacant soit seules, soit par groupe de deux dans la petite coque de glycoprotéines qui entoure l’œuf, la zone pellucide, on obtient autant d’embryons qui peuvent ensuite, chacun ou par groupe de deux, être transplantés dans une femelle porteuse. Le singe “ Tétra ”, né récemment dans un laboratoire de l’Oregon aux USA, a été obtenu de cette façon. Une équipe canadienne de l’Université de Guelph a pu, il y a quelques années, produire 4 veaux à partir des huit cellules d’un embryon ce qui constitue un record.

La scission d'un embryon se fait à un stade un peu plus tardif au stade blastocyste (ou blastula). A ce stade, les cellules de l’embryon viennent juste de commencer à se différencier en deux types bien distincts, celles qui ne donneront que le placenta, et celles qui donneront le fœtus et une partie du placenta. La zone pellucide commence à se fendre ce qui permettra au blastocyste de s’implanter. Si on coupe en deux parties ce blastocyste, en prenant soin de répartir à peu près également les deux types cellulaires facilement reconnaissables, on peut obtenir des jumeaux. C'est d’ailleurs ce qui se produit naturellement, mais très occasionnellement quand, au moment de s’échapper de la zone pellucide, l’embryon se trouve momentanément géné par une ouverture qui se révèle être de façon fortuite trop étroite. Telle est l’origine, chez l’homme, des jumeaux vrais, c’est à dire issus du même œuf. Et ce n’est pas injure leur faire que de dire que biologiquement parlant, les vrais jumeaux sont bien des clones ! Il y a quelques années, nous nous étions appuyé sur ces observations pour produire des jumeaux bovins par scission de blastocyste ; la technique s’est avérée très efficace puisque la moitié des vaches gestantes après transfert des deux demi embryons avaient donné naissance à des jumeaux ! Mais couper un blastocyste en quatre révéla vite son défaut, les quatre lots de cellules étant alors trop petits pour pouvoir chacun reformer un blastocyste capable ensuite de pouruivre son développement.
Le transfert de noyau consiste à placer au contact d'un ovule énucléé (sans chromosomes maternels) une cellule provenant d'un tissu déjà différencié, qui contient donc les deux stocks de chromosomes parentaux. En pratique on utilise des ovules provenant de femelles différentes dont on ne garde que le cytoplasme; ainsi, dans le cas de la vache, ces ovules peuvent être ponctionnées directement dans les follicules d’ovaires récupérés dans des abattoirs, ce qui permet de disposer très rapidement de plusieurs dizaines de cytoplasme receveurs pour les noyaux. On a recours à différents procédés pour s’assurer que le noyau de la cellule donneuse rentre dans l'ovule receveur. Une des étapes de cette opération minutieuse consiste à fusionner la membrane de la cellule donneuse de noyau avec celle de l’ovule. Pour cela on se sert d’une courte impulsion électrique qui ne dure que quelques microsecondes mais qui suffit pour déstabiliser très transitoirement les membranes et permettre à la fois leur fusion et l’activation de l’œuf, c’est à dire la mise en route de modifications chimiques qui conduiront à la réalisation de la première division. Le développement de "l'œuf reconstitué" peut alors commencer. Transplanté dans une mère porteuse, le veau obtenu sera génétiquement identique à la vache donneuse de noyau, qu'il s'agisse d’une cellule de glande mammaire, comme cela a été le cas pour Dolly en février 1997, ou de celui d’un muscle comme pour la vache Marguerite née à l’INRA en février 1998. Le rôle du cytoplasme de l’ovule mérite ici d’être souligné car c’est lui qui va réorganiser le noyau pour lui faire retrouver un état embryonnaire. Cet étonnant pouvoir est encore loin d’être compris : on sait seulement que l’ovule est une cellule tout à fait particulière qui contient plusieurs millions de molécules fabriquées au cours de l’ovogénèse, c’est à dire pendant cette longue période qui commence dés la vie fœtale de la femelle après que se soit différenciée la gonade. Ces molécules sont indispensables au contrôle des premières divisions de l’œuf car le noyau est à ce moment là incapable par lui-même de toute activité de synthèse. Il ne deviendra véritablement actif que progressivement et après que le cytoplasme de l’ovule l’ait profondément réorganisé. Ces premiers échanges entre le noyau et le cytoplasme sont déterminants pour la suite du développement. On commence à réaliser qu’ils peuvent affecter le fonctionnement de gènes qui ne s ‘expriment que plus tard au cours de l’embryogénèse et l’on soupçonne même que ces effets peuvent se faire sentir après la naissance ! En outre le cytoplasme de l’ovule est riche en ces organites cellulaires que sont les mitochondries qui jouent un rôle essentiel dans le contrôle du métabolisme cellulaire. Les mitochondries possèdent leur ADN propre qui ne sera utilisé qu’après plusieurs divisions, un peu avant le stade blastocyste,et en interaction avec l’ADN du noyau. Il faut donc qu’un “ dialogue ” constructif puisse s’établir rapidement entre le cytoplasme de l’ovule et le noyau donneur alors même que celui ci a en quelque sorte leurré le cytoplasme programmé chez les mammifères pour accueillir un spermatozoïde. Comprendre comment le noyau se trouve ainsi être dé-différencié en un noyau embryonnaire est la question fondamentale de biologie que pose le clonage
Technique, science :technoscience et clonage
Quelque soit l’espèce considérée, le rendement de la technique de transfert de noyaux est faible : un à trois pourcents seulement des embryons reconstitués se développement à terme alors qu’après fécondation in vitro, ce taux est d’environ 50%. Il est vrai que nous n'avons que très peu de recul, à peine trois ans, mais ce faible rendement est aussi un fait chez la grenouille où pendant de nombreuses années des chercheurs tentèrent, sans succès, d’obtenir un animal adulte (au delà du stade larvaire) à partir du noyau d’une cellule somatique elle même prélevée sur un autre adulte. Les données qui commencent à être publiées suggèrent que l’efficacité diminue quand le noyau provenant du même type cellulaire (par exemple un fibroblaste) est prélevé sur un animal adulte par rapport à un fœtus sans que l’on puisse dire pour l’instant si cette différence est due au fait qu’une plus grande partie des noyaux donneurs est porteuse d’anomalies génétiques après prélèvement chez l’adulte ou si il s’agit d’une moins grande aptitude à subir les remaniements imposés par le cytoplasme de l’ovule. Si on utilise des noyaux de cellules embryonnaires (prélevés juste avant l’implantation) l’efficacité est plus élevée et on peut obtenir (chez le bovin) en moyenne 10 veaux pour cent embryons reconstitués. Par contre l’âge de l’animal adulte semble peu affecter les résultats. Une autre observation est que dans tous les cas, et contrairement à ce qui se produit aussi bien dans les conditions de reproduction naturellles qu’après insémination artificielle ou fécondation in vitro, le taux d’avortements tardifs est élevé, un peu comme si le filtre que constitue l’implantation fonctionnait moins bien pour les embryons clonés. Les causes sont apparemment multiples et comme nous le verrons plus loin, pas seulement génétiques.
A ce jour, environ cent cinquante veaux clonés sont nés dans le monde, une quarantaine de moutons, moins de vingt chèvres, quelques porcs.. C’est peu au regard des cinq milliards de veaux nés par insémination artificielle depuis 1950, des deux millions nés après transfert d'embryons depuis 1975 ou des cent mille issus de fécondation in vitro depuis 1988 ! Curieusement, les premiers clones de souris n’ont été obtenus que près de deux ans après la naissance du mouton Dolly, et ceci malgré les nombreux efforts réalisés pendant près de vingt ans par plusieurs équipes. Ces échecs avaient fait considérer le clonage comme “ biologiquement impossible ” chez les mammifères ! Aujourd’hui, les succès avec cette espèce sont encore peu nombreux. Mais la situation pourraient changer: en jouant à la fois sur les conditions techniques de reconstitution de l’embryon et sur la composition du milieu de culture avant transfert dans une femelle receveuse nous venons de montrer que l’on pouvait obtenir un taux d’implantation élevé, et que c’était surtout la mortalité fœtale tardive qui était responsable du faible rendement. Les quelques souris obtenues sont par contre physiologiquement normales et peuvent se reproduire normalement.

Les clones commencent donc à naître régulièrement dans les laboratoires et ils forcent au constat suivant : un clone est un animal dont la généalogie brouille très vite les repères auxquels nous sommes habitués. Avec le clonage, un animal donneur de noyau peut avoir plusieurs clones d’âge différents dont peuvent être dérivés des clones de clones si l’opération de transfert de noyaux est répétée à partir de cellules prélevées sur un animal lui même issus de clonage. Un clone femelle peut avoir cinq mères : la “ mêre ” donneuse de noyau ; celle qui a donné le cytoplasme receveur ; la mère porteuse ; la mère qui l’allaite (nous avons fréquemment recours à cette mêre car les mêres porteuses que nous utilisons sont des vaches de la race charolaises moins bonne laitières que celles de la race Holstein) ; et… la mêre génétique, c’est à dire celle qui a donné naissance à la mêre donneuse de noyau en lui transmettant ses gènes ; il a dans tous les cas un pére, le père génétique, indispensable chez le mammifères où la parthénogénèse (c’est à dire le développement à terme d’un ovule activé sans fécondation), n’est pas possible. Si ce clone est un mâle, il a un deuxième père, le donneur du noyau et jusqu’à quatre mères. Quand aux clones de clones, leur grand-mère donneuse de noyaux est aussi leur soeur génétique (même père et même mère) et les autres membres du premier lot de clones sont à la fois leurs tantes (ou oncles) et leurs sœurs (ou frères). Nous venons, à des fins expérimentales de constituer une telle tribu de 10 vaches à l’INRA : définir un système d’identification pour ces animaux n’est pas une mince affaire !

Génèse, épigénèse : le clonage, un outil pour la recherche fondamentale
Le clonage est d’abord un nouvel outil pour l’une des grands thématiques de la recherche fondamentale : celle de la différenciation cellulaire. Au fur et à mesure que les tissus se forment, les cellules se spécialisent dans différentes fonctions ; dans de très nombreux tissus, on trouve des cellules qui en se divisant sont capables de donner à la fois une cellule identique à elle-mêmes et une autre cellule différenciées : ces cellules multipotentes sont aussi appelées cellules souches. La transformation d'une cellule souche en une cellule différenciée obéit à un mécanisme contrôlé qu'il convient de comprendre. En effet, le dérèglement de cette division reproduit ce qui se passe quand des cellules se mettent à proliférer de façon anarchique et à devenir cancéreuses. Comprendre avec le transfert de noyaux comment une cellule peut en quelque sorte revenir en arrière en modifiant le programme de développement qui l’avait faite passer de l’état d’œuf à celui de cellule différenciée devrait nous conduire à mieux cerner les conditions qui engagent une cellule à devenir tumorale. Avec le transfert de noyaux, la cellule fusionnée avec le cytoplasme de l’ovule retrouve un état totipotent, c’est à dire un état qui lui permet, à elle toute seule, de redonner toutes les cellules de l’organisme. Cet état redonne une vigueur nouvelle aux cellules. C’est ce que montre l’expérience suivante réalisée récemment chez la vache. Elle consiste, dans un premier temps, à mettre en culture des cellules prélevées sur un animal, par exemple des fibroblastes qui se divisent un certain nombre de fois, environ 30 à 50 , avant de rentrer dans un état de sénéscence ; dans un deuxième temps, on produit par clonage un fœtus à partir du noyau de ces cellules et on met à nouveau des fibroblastes en culture : on constate que ceux ci peuvent alors à nouveau se diviser autant de fois que lors de la première culture; et peut être même plus !
Cette jouvence cellulaire observée en culture a éveillé le fantasme d’immortalité qu’évoque le clonage alors que quelques mois auparavant, mais en sens opposé, on affirmait que Dolly vieillissait plus vite que son âge parce que certaines régions de ses chromosomes, les extrémités ou télomères (qui jouent un rôle clé pour maintenir normal le nombre de chromosomes à chaque division), étaient plus semblables à celles de l’animal donneur de noyaux agé de six ans qu’à celle d’un animal de deux ans ! Dans les deux cas, c’est extrapoler rapidement de la cellule en culture à l’animal vivant, en oubliant d’intégrer toute la complexité des régulations qui permettent à un organisme complexe d’exister : on a sans doute plus l’âge de ses artères que celui de ses télomères, et Dolly et les autres clones ont bien l’âge physiologique qui correspond à leur naissance! Seuls quelques type cellulaires ont à ce jour été utilisés comme source de noyaux. Et aucun d’entre eux ne correspondaient à des cellules ayant atteint un stade de différenciation terminal in vivo. L’étude des remaniements du noyau de ces cellules après clonage serait pourtant très précieux pour comprendre comment l’environnement cellulaire peut dicter à une cellule les conditions qui aboutissent à son engagement dans une fonction spécialisée, comme c’est le cas par exemple pour les cellules neuronales ou bien les kératinocytes qui forment la surface de notre peau.

Le clonage permet aussi d’aborder de nouvelles questions fondamentales. C’est le cas par exemple pour celle qui concerne le rôle important et jusqu’à une date récente ignoré, de l’environnement de l’embryon sur le développement fœtal et celui du jeune après la naissance. L'environnement est pris ici dans un sens très large puisqu'il peut s'agir de l'environnement du noyau avec le cytoplasme de l'ovule, de l'environnement de l'embryon cloné avec son milieu de culture ou celui que constitue l'environnement utérin au cours de la vie fœtale. Le clonage révèle que cette épigénèse, c’est à dire l'ensemble des mécanismes qui se surimposent à ceux déterminés par l'ADN et qui influencent un caractère, est de fait à l’oeuvre dès les premiers stades du développement. L’effet à long terme de l’environnement sur l’activité du noyau s’est manifestée de façon spectaculaire avec deux de nos clones bovins, dont l’un était la vache Marguerite, née tout à fait normalement après clonage somatique. Deux mois après leur naissance, soit au moment du sevrage, ces animaux n’ont pu activer leur système immunitaire et sont morts en quelques jours d’une infection généralisée avec gangrène fulgurante ; l’autopsie révélera que toutes les fonctions s’étaient développées normalement à l’exception de la fonction immunitaire, le thymus n’étant pas devenu mature. Aucune anomalie génétique ne put être décelée sur les tissus, et nous pûmes conclure que ce déréglement physiologique trouvait son origine dans le transfert de noyau qui n’avait pourtant pas empéché la mise en place des autres fonctions de l’organisme. D’autres manifestations tardives du clonage commencent maintenant à être documentées : les clones issus de cellules somatiques différenciées sont, à la naissance, en moyenne plus lourds que les veaux nés après insémination artificielle (6 kg en moyenne), et 20 à 30 % d’entre eux ont un surpoids de 10 à 25 kg avec des manifestations de type diabétique et des anomalies cardio-vasculaires. Ces dysfonctionnements semblent résulter du fait que, par rapport aux fœtus normaux, les fœtus clonés ont une croissance qui semble se synchroniser plus difficilement avec les variations d’apports nutritifs du milieu utérin. Ces désynchronisations sont aussi observées après reproduction normale, mais avec un fréquence faible, quand l’alimentation de la mère est mal adaptée aux besoins du fœtus. Les clones bovins se révèlent être des bons modèles pour mieux comprendre l’origine fœtale (et non seulement génétique) de physiopathologies prévalentes dans notre propre espèce
Parce qu’il procède à la fois d’une dissociation entre noyau et cytoplasme et d’une multiplication d’organismes génétiquement identiques, le clonage rend aussi possible l’étude du rôle spécifique des gènes nucléaires dans la genèse et la réalisation de caractères complexes comme la résistance à des maladies, le comportement ou le vieillissement. . Disposer de plusieurs animaux génétiquement identiques permet donc de mieux distinguer dans les caractères d'un animal ce qui est dû à ses gènes de ce qui est dû à l'environnement; en d'autres termes, quelle est la part de l'inné et celle de l'acquis. Le clonage devrait aussi permettre de définir l’importance de l’héritage mitochondrial maternel et de connaître les fonctions qu’exerce le cytoplasme de l’ovule au cours du développement. Plusieurs expériences montrent clairement que la fusion entre une cellule somatique d’une espèce et le cytoplasme d’un ovule énuclée d’une autre espèce permet de reconstituer un embryon capable de se différencier en blastocyste. Des lignées de cellules embryonnaires ont même pu être établies après mise en culture d’ embryons chimères mouton/vache, ou singe/vache ! Savoir si de tels embryons peuvent s’implanter ou non, c’est mieux comprendre ce qui fait la spécificité d’une espèce et découvrir que certaines combinaisons nucléo cytoplasmiques seront peut être tout à fait viables .
Semblables, différents : à quoi serviront les clones ?
Les premières applications du clonage vont concerner non pas tant l’obtention de lots d’animaux domestiques génétiquement identiques, avec la menace d’un appauvrissement des populations animales que certains ont tout de suite évoqué à l’annonce de la naissance du mouton Dolly, que l’utilisation et l’aide au maintien… de la diversité génétique. Le paradoxe n’est qu’apparent et il montre en tout cas que les premières craintes n’étaient pas les plus justifiées.

La première perspective du clonage est de devenir un outil pour la transgénèse animale. Il y a deux raisons à cela. La première concerne l'efficacité de la transgénèse. Des premiers succès obtenus chez la brebis, la chèvre ou la vache montrent l'avantage du transfert de noyaux par rapport à la microinjection d'ADN directement dans l'oeuf (au stade une cellule). Cette technique est utilisée depuis plusieurs années pour obtenir l'intégration d'une séquence d'ADN étranger dans un noyau hôte. La transgénèse permet de produire des molécules complexes en utilisant ce biotransformateur performant qu'est la mamelle et les nombreuses possibilités de cette approche seront développées dans la conférence de L.M.Houdebine. Le clonage devrait donc contribuer à réduire le coût de production de molécules complexes d'intérêt pharmaceutique pour obtenir des molécules à haute valeur ajoutée (comme par exemple le facteur IX qui intervient dans le processus de coagulation du sang), ou des anticorps qui pourraient alors être utilisés beaucoup plus largement à des fins de diagnostics. C‘est ce que démontre le veau ” Lucifer ”, né en juillet 1998 à l’INRA. Dans cette expérience, on a comparé l’efficacité de la microinjection d’un transgène avec celle du transfert de noyaux de cellules somatiques transgéniques . Il nous a fallu injecter plus de 2100 embryons de stade “ une cellule ” pour obtenir un fœtus transgénique alors que le transfert de 20 blastocystes, obtenus à partir de seulement 175 embryons reconstitués chacun avec un noyau transgénique, a suffi pour obtenir “ Lucifer ” avec un coût trois à cinq fois plus faible que pour la microinjection. Ce veau est porteur d’un gène semblable à celui qui chez le ver luisant, produit de la lumière : la luciférase. On a fait en sorte que le gène s’exprime dans toutes les cellules, mais seulement après un stress. On dispose ainsi d’un animal modèle chez lequel on peut mesurer très finement l'état de stress et ceci par une méthode non invasive puisqu'il suffit de prélever quelques cellules de la muqueuse buccale par exemple pour faire le test.

La seconde raison tient au fait que l'on peut envisager, dans un avenir sans doute proche, d'utiliser le clonage pour garantir le bon fonctionnement du transgène. A ce jour, son intégration après microinjection ou après transfection des cellules donneuses de noyaux se fait au hasard, et le plus souvent sous forme de copies multiples. Ces intégrations non contrôlées affectent fréquemment le patron d'expression de l'ADN étranger et compromettent les longs efforts requis pour produire les animaux. Elles contribuent à l'augmentation de la fréquence d'apparition de troubles physiologiques, une situation que le respect dû au bien être des animaux d'élevage ne peut tolérer. Or, le fait de pouvoir disposer d'un grand nombre de cellules en culture permet de recourir à des stratégies moléculaires pour cibler l'intégration du transgène dans un endroit préalablement choisi du génome, par exemple une région où l'environnement chromatinien favorisera un niveau élevé de son activité. Le clonage devient alors un enjeu pour obtenir directement ces animaux transgéniques en utilisant des cellules donneuses de noyaux où les séquences du transgène se sont recombinées à des séquences endogènes préalablement choisies. Compte tenu du grand nombre de divisions nécessaires pour sélectionner ces rares événements de recombinaison, l'obtention de lignées de cellules totipotentes qui peuvent être maintenues pendant très longtemps en division active in vitro sera sans doute requise. Ces cellules n'existent à ce jour que chez la souris.
Une exigence supplémentaire, au moins pour les espèces domestiques, sera d'éliminer toute séquence d'ADN utilisée pour trier les cellules où s'est produit la recombinaison homologue entre les séquences endogènes visées et le transgène. Plusieurs technologies récentes devraient permettre de débarrasser ainsi les noyaux donneurs de ces auxiliaires de fabrication que sont les gènse de résistance aux antibiotiques, ou les gène rapporteur du fonctionnement effectif du transgéne. Plus question donc, avec l’animal, de produire des organismes génétiquement modifiés par bricolage comme cela a été le cas avec les plantes. L’objectif de la recherche est une transgénèse propre qui ne fera que substituer par exemple un allèle à un autre. Les applications du clonage chez l'animal conduiront donc en pratique à développer les technologies de transgénèse, pour façonner directement les animaux d'élevage et non seulement pour mieux sélectionner les meilleurs à partir de lots d'animaux de méme génotype. Dans un premier temps, il est probable que la recombinaison homologue entre l'ADN exogène et des séquences endogènes sera utilisée pour des applications médicales, comme par exemple la création d'animaux immunocompatibles avec l'homme (le porc) et pour tenter de rendre effective la pratique des xénotransplantations. A plus long terme, c’est une véritable ingéniérie des animaux domestiques qui pourrait voir le jour et rendre plus rapide les méthodes classiques de la sélection animale. Le clonage devrait aussi aboutir à l'établissement de nouveaux modèles animaux tant pour approfondir nos connaissances sur les régulations des principales fonctions de l'organisme que pour étudier des maladies pour lesquelles le recours à la souris comme modèle s'est avéré décevant.

Mais le clonage a commencé aussi à être utilisé pour maintenir des génotypes animaux exceptionnels. Les Néo-zélandais par exemple viennent d’obtenir plusieurs veaux clonés à partir d'une cellule prélevée sur une vache de dix-sept ans, une des rares survivantes d'un troupeau qui s'était adapté au climat très rigoureux d’une ile du sud du pays. Les Japonais ont aussi cloné un taureau de vingt trois ans, un âge canonique chez cette espèce. Dans les deux cas, ces clones ont pu se reproduire tout à fait normalement permettant ainsi d’ introduire ces génotypes d’intérèt dans les schémas classiques de la sélection animale. Avec un collègue généticien de l’INRA, nous avons montré qu’il suffit de disposer d’environ 5,ou tout au plus 10 clones d’un animal d’intérèt pour accéder, à partir de mesures faites sur les clones eux mêmes ou sur leurs descendants, à une connaissance à la fois plus précise et plus rapide de la valeur génétique de l’animal.
L’animal, l’homme : clonage reproductif et clonage thérapeutique
Avec les exemples présentés ci-dessus, l’objectif est d’obtenir la naissance de clones après transfert, dans une femelle porteuse, d’embryons reconstitués avec des noyaux somatiques prélevés sur un organisme adulte: c’est ce que l’on appelle le clonage reproductif. Mais on peut aussi envisager de ne pas transplanter les embryons reconstitués et de les cultiver pour obtenir des lignées de cellules multipotentes embryonnaires ou différenciées qui auront les mêmes caractéristiques génétiques que celles du donneur : c’est ce que l’on appelle le clonage thérapeutique ou aussi le clonage non reproductif.. Cette distinction, établie par le Comité Consultatif National d’Ethique dès 1997 est essentielle pour comprendre comment le clonage pourrait être appliqué à l’homme.

A ce jour, il existe dans le monde entier un très large mouvement pour interdire le clonage reproductif humain. Il y a deux ans, dix-neuf pays européens ont signé un protocole dans ce sens. Bien sûr, on peut toujours justifier le recours pour l’homme au clonage reproductif. : il permettrait par exemple d’augmenter les chances de grossesse lorsqu’un seul embryon a pu être obtenu in vitro, ou de perpétuer le lignage biologique en cas de procréation impossible. Mais de telles pratiques, techniquement possibles, ouvriraient la voie à la reproduction par clonage d’un enfant sur le point de mourir, à celle d’un être cher ou d’une personne “exceptionnelle”, sans parler du fantasme de faire naître plusieurs enfants génétiquement identiques. Le clonage reproductif apparaît alors comme une inadmissible instrumentalisation de la personne humaine, une atteinte dégradante à sa dignité. Il suscite aujourd’hui la prise de conscience quasi unanime de la nécessité d’un accord international visant à une interdiction. L’énoncé d’un tel accord marquerait une nouvelle avancée de la démarche éthique dans l’accompagnement et le contrôle de l’avancée des connaissances scientifiques.

Le clonage thérapeutique par contre vise une utilisation très différente du transfert de noyaux: celle qui ouvre la voie à de nouvelles formes d'autogreffes. L'annonce aux USA de premiers succès dans l'isolement de lignées de cellules totipotentes établies à partir de la culture de blastocystes humains surnuméraires donnés à la recherche par des couples de patients (engagés dans un programme de procréation médicalement assitée) a considérablement renforcé l’intérèt pour cette approche. L’idée est de produire, par transfert de noyaux, un blastocyste à partir par exemple de cellules donneuses prélevées par biopsie sur un patient atteint de leucémie, puis de cultiver les cellules de cet embryon et dériver différents types cellulaires dont des cellules précurseurs du lignage hématopoïétique ; ces cellules pourront alors être, sans danger de rejet, réintroduites dans la moelle osseuse du malade après avoir éventuellement été modifiées génétiquement pour les rendre saines.
La mise en oeuvre effective du clonage thérapeutique nécessitera encore beaucoup de recherches avant de pouvoir devenir réalité mais elle est promise à de très nombreuses applications médicales, notamment pour les maladies neurodégénératives. Cette forme de clonage pourrait à son tour n’être qu’une étape transitoire de la recherche. En effet, on s’est aperçu récemment que des cellules souches isolées à partir de tissus spécialisés, tissus nerveux, sanguins ou musculaires, peuvent voir leur destin réorienté quand on modifie directement leur environnement in vitro sans faire pour autant appel au transfert de noyaux : en plaçant par exemple des cellules nerveuses dans la circulation sanguine de souris, ces cellules acquièrent un phénotype de cellules sanguines. Les mécanismes de cette transdétermination dont semblent capables plusieurs types de cellules somatiques sont encore peu compris. Mais ces derniers résultats nous placent de fait devant un véritable débat éthique que l’on peut formuler en deux questions :
Pour établir des lignées de cellules embryonnaires humaines multipotentes à partir de noyaux de cellules somatiques, il faut d’abord définir les conditions de culture qui permettront de dériver des lignées de cellules à partir de blastocyte. En France, ceci est impossible, car toute recherche , même sur les embryons surnuméraires des programmes de procréation médicalement assistée, est interdite par la loi de Bioéthique de 1994. Mais cette loi doit être prochainement révisée. D’où la première question posée au législateur : faut il, en prenant en compte les nouvelles données de la recherche, continuer à interdire ou au contraire autoriser la mise en culture de ces embryons surnuméraires, avec bien sûr un contrôle approprié ? Pour réaliser le clonage thérapeutique, il faut reconstituer des embryons donc créer des embryons humains, à partir d’ovules humains, pour les besoins de la recherche. En France, comme dans de nombreux pays, cette création “ d’êtres humains potentiels ” pour reprendre l’expression proposée par le Comité Consultatif National d’Ethique pour définir le statut de l’embryon humain, est interdite. D’où la deuxième question, sans doute plus difficile : peut on autoriser, même transitoirement la création d’embryons humains pour la recherche? Interdire, autoriser : le clonage thérapeutique appelle une exigence supplémentaire : celle d’apprendre à mesurer à leur juste valeur les avancées très rapides de ce monde des technosciences auquel appartient le clonage. Entre un rejet global et une défense aveugle, suivre une ligne de crête sans doute plus courageuse : celle le long de laquelle il faut , en temps voulu, décider d’avancer ou de faire marche arrière. Contre la peur, une telle démarche devient un acte de sagesse.

Conclusion
En moins de trois ans, le clonage animal est devenu à part entière un outil pour la recherche fondamentale. Il aide à mieux comprendre les mécanismes de la différentiation cellulaire et la nature moléculaire de la grande plasticité fonctionnelle du génome de nos cellules. Il montre aussi que nous ne sommes pas que le produit de nos gènes et devrait permettre de mieux comprendre comment, chez les mammifères, l’environnement de l’embryon modèle son destin. Associé à la transgenèse, le clonage permettra de façonner l'animal et d’engager une véritable ingéniérie de leur génome.

Là, science et applications avancent déjà de paire, côtoyant le marché pour qui le vivant est avant tout une activité minière. Là, les esprits curieux qui voudraient connaître la complexité de l’ontogénèse rencontrent les téméraires pour qui science et techniques sont aussi des instruments de puissance de l’homme sur le vivant. Là se dessinent de nouvelles utilisations de l’animal qui pourraient redéfinir les contours de notre représentation de l’homme.
Avec le clonage, l’activité scientifique semble se confronter aux plus forts de nos mythes fondateurs : celui de l’immortalité avec ses pactes qui confèrent une éternelle jeunesse ; celui du pouvoir qui rapproche des dieux façonnant les êtres vivants de notre entourage ; celui enfin du double et donc de l’indifférenciation qui conduit au crime. Les chimères modernes semblent prêtes à sortir des laboratoires et la peur mais aussi la fascination qu’excerce le clonage animal se lisent à longueur de médias. Mais être partagé entre l’attrait et l’effroi, n’est ce pas en définitive ce qui accompagne notre regard quand nous le portons sur cette terre irremplaçable pour mieux en ressentir la beauté ” !.

 

    VIDEO     canal U       LIEN  

 
 
 
 

LE DÉVELOPPEMENT DE L'INTELLIGENCE CHEZ L'ENFANT - OLIVIER HOUDE

 

 

 

 

 

 

 

1
Texte de la 25ème conférence de l'Université de tous les savoirs réalisée le 25 janvier 2000


par Olivier Houdé

Le développement de l’intelligence chez l’enfant


Dans sa leçon inaugurale, François Jacob s’est attaché à montrer que la vie est un processus,
une organisation de la matière et qu’elle n’existe pas en tant qu’entité indépendante qu’on
pourrait caractériser (quelque substance spéciale ou force vitale). Suivant la même logique,
les sciences cognitives contemporaines, notamment la psychologie expérimentale et les
neurosciences, considèrent que l’intelligence n’est autre qu’un processus, une organisation de
la matière (corps, cerveau) et de la vie.
Il n’en fut toutefois pas toujours ainsi dans l’histoire des idées. On sait qu’à la question
« D’où détenons-nous ce précieux trésor qu’est notre intelligence ? », René Descartes (1596-
1650) répondait, avec une évidence qui semblait s’imposer à lui, Dieu a déposé dans notre
esprit, dès la naissance, des idées logico-mathématiques claires et distinctes, noyau de
l’intelligence humaine. Quatre siècles plus tard, en cette année 2000, quelle réponse précise
apporte la science à cette question ?

Entre Descartes et nous, deux événements-clés à retenir. Il s’agit d’abord de l’introduction par
Charles Darwin (1809-1882) de l’idée d’une évolution progressive de l’intelligence animale et
humaine (à travers la phylogenèse ou évolution des espèces), où s’imbriquent la Matière, la
Vie et la Pensée - excluant Dieu de l’explication. Il s’agit ensuite de la reprise de cette idée
dans l’étude de l’ontogenèse (l’intelligence se construit petit à petit du bébé à l’adulte) par
Jean Piaget (1896-1980), en psychologie de l’enfant, et par Jean-Pierre Changeux en
neurobiologie, avec le « darwinisme neural-mental ».
Selon Piaget, le développement de l’intelligence chez l’enfant se caractérise, comme l’histoire
des sciences, par une succession de coordinations cognitives nouvelles, chacune définissant
un stade.1 Il s’agit d’étapes, datées en années et en mois, dans la construction de structures
logico-mathématiques de plus en plus complexes, relatives à l’objet, au nombre, à la
catégorisation (ou classification) et au raisonnement. Cette conception est linéaire et
strictement cumulative en ce qu’elle est systématiquement liée à l’idée d’acquisition et de
progrès : de l’intelligence sensori-motrice du bébé (sens et actions) à l’intelligence
conceptuelle et abstraite de l’enfant et de l’adolescent.
En fait, les données expérimentales actuelles indiquent que les choses ne se passent pas ainsi.2
D’une part, il existe déjà chez le bébé des capacités cognitives assez complexes
(connaissances physiques, mathématiques et logiques) ignorées par Piaget et non réductibles à
un fonctionnement strictement sensori-moteur. D’autre part, la suite du développement de
l’intelligence, jusqu’à - et y compris – l’âge adulte, est jalonnée d’erreurs, de biais perceptifs,
de décalages inattendus et d’apparentes régressions cognitives. Ainsi, plutôt que de suivre une
ligne ou un plan du sensori-moteur à l’abstrait (les stades de Piaget), l’intelligence avance de
façon tout à fait biscornue ! Mais cette forme de développement doit bien correspondre à une
logique neurale et cognitive dans le cerveau humain. Laquelle ?

Le constat de compétences précoces chez le bébé, s’il peut amener à reconnaître le caractère
inné de certaines d’entre elles (sans qu’il s’agisse pour autant d’un don de Dieu comme
l’affirmait Descartes), conduit aussi et surtout à retenir l’idée de mécanismes de raisonnement
physique, numérique, etc., associés à une faculté très précoce d’apprentissage par la
2
perception, notamment visuelle, ou par les couplages perception-action (faculté du bébé
humain partagée, sur certains aspects, avec les primates non-humains comme l’avait pressenti
Darwin). Et ce processus de construction cognitive – sans doute déjà conceptuel ou protoconceptuel
- est à l’évidence beaucoup plus rapide que ne le pensait Piaget.
Mais l’essentiel n’est pas là. Le plus intéressant tient à ce que le cerveau de l’Homme, outre
ses mécanismes innés, ses capacités puissantes d’apprentissage, de raisonnement,
d’abstraction, etc., est une sorte de jungle où les multiples compétences du bébé, de l’enfant et
de l’adulte, sont à tout moment susceptibles de se télescoper, d’entrer en compétition (en
même temps qu’elles se construisent) : d’où les erreurs, les biais et les décalages inattendus
(exactement comme dans l’histoire des sciences et des savants !). Il en ressort la nécessité -
pour être intelligent - d’un mécanisme de blocage tout aussi puissant : l’inhibition. « Je pense,
donc j’inhibe » ! (et non pas seulement, comme le suggérait Piaget, « je pense, donc j’active
et je coordonne »).3

Un tel mécanisme inhibiteur est actuellement considéré, dans un cadre évolutionniste, comme
un élément-clé de l’adaptation comportementale et cognitive qui a conduit à Homo sapiens
sapiens; une forme « d’algorithme darwinien ». A l’échelle de l’ontogenèse de l’enfant, ce
mécanisme doit aussi (re)devenir efficace - chez l’adulte, le rester - pour les domaines de la
construction de l’objet, du nombre, de la catégorisation et du raisonnement.
Ainsi, l’une des façons actuelles de chercher à percer le mystère de l’intelligence est
d’étudier, du bébé à l’adulte, le rôle de l’inhibition comme mécanisme de sélection.
L’activation/inhibition étant une logique de fonctionnement tant neurale que cognitive, les
techniques utilisées sont ici à la fois celles de la psychologie expérimentale et de la biologie
humaine (l’imagerie cérébrale fonctionnelle). En voici deux exemples : le nombre chez le
bébé et l’enfant, et le raisonnement logique chez l’adulte.

Selon Piaget, avant d’arriver à la notion de nombre, l’enfant doit maîtriser certaines capacités
comme celles de classer, d’inclure et de sérier (aspects cardinal et ordinal du nombre). Il peut
alors réussir l’épreuve dite de « conservation du nombre ». Dans ce test, qui introduit une
interférence entre le nombre et la longueur (avec deux alignements d’objets de même nombre
mais de longueur différente après l’écartement de l’un d’entre eux), l’enfant considère jusqu’à
6-7 ans que « longueur = nombre », donc « qu’il y en a plus là où c’est plus long » ! Cela
signifie, selon Piaget, que l’enfant d’école maternelle est encore intuitif, au sens où il est
« prisonnier » du cadre perceptif. Ce n’est qu’à 6-7 ans qu’il devient « conservant », critère de
l’atteinte du concept de nombre.
Le développement de l’intelligence est donc ici long et laborieux : il faut attendre « l’Age de
raison » cher aux philosophes. Mais les découvertes plus récentes d’une psychologue
américaine, Karen Wynn, publiées dans la revue Nature en 1992, ont reposé avec force la
question de l’émergence (précoce ou non) de la notion de nombre.4 Ces travaux montrent que,
dès 4-5 mois, des bébés observés au niveau de leur regard (enregistrement des temps de
fixation visuelle) sont capables de détecter la transgression ou la « conservation » du nombre
lorsqu’on leur présente des événements numériques impossibles, c’est-à-dire magiques, ou
possibles (sans le piège perceptif de la longueur introduit par Piaget). Selon Wynn, ces
résultats suggèrent que les bébés possèdent déjà de véritables concepts numériques (avec
encodage de la relation d’ordre) – ce qui était inconcevable pour Piaget ! On sait aussi, depuis
peu, que les singes rhésus ont des capacités numériques précises jusqu’à 9.5

3
Nos travaux, publiés en 1997 dans la revue Cognitive Development, ont par ailleurs montré, à
partir d’une adaptation de l’expérience de Wynn au niveau verbal, que les jeunes enfants de 2
à 3 ans, observés en crèche, sont moins performants pour raisonner sur le nombre à travers le
langage cette fois que ne l’étaient les bébés de 4-5 mois ! (ils font des erreurs que ne font pas
les bébés dans leurs réactions visuelles).6 Tout se passe donc comme si le tout début (2-3 ans)
de l’apprentissage du vocabulaire des nombres et de la distinction linguistique
singulier/pluriel (qui oppose 1 à tous les autres nombres considérés globalement) entraînait un
décalage de performance, une régression cognitive, empêchant un jugement numérique exact
et précis (d’où l’impression erronée qu’ont les éducateurs, face à l’enfant de cet âge,
d’observer le tout début de l’acquisition du nombre !). En revanche, il apparaît qu’après une
reconstruction cognitive (ou reconceptualisation), les enfants de 3-4 ans, observés à l’école
maternelle, retrouvent, à travers le langage, le niveau de performance des bébés de 4-5
mois (avec, dans ce cas, la possibilité d’une argumentation numérique).
Mais comment expliquer alors que si l’on introduit, comme Piaget, une interférence entre le
nombre et la longueur (deux alignements d’objets de même nombre mais de longueur
différente), ces mêmes enfants sont à nouveau en situation d’échec, intuitifs, perceptifs,
considérant qu’il y en a plus là où c’est plus long ? Les techniques de la psychologie
expérimentale permettent aujourd’hui de démontrer que l’épreuve de Piaget teste avant tout la
capacité d’inhiber la stratégie visuo-spatiale « longueur = nombre » (une heuristique de
quantification perceptive souvent pertinente et encore utilisée par l’adulte) et non les capacités
numériques per se. Le développement du nombre est donc à la fois beaucoup plus rapide et
ensuite plus complexe (compétition entre stratégies) que ne l’imaginait Piaget. Au-delà des
compétences précoces dans des situations optimales (les recherches de Wynn sur le bébé),
être intelligent c’est non seulement « reformater » (reconstruire à travers le langage), mais
c’est aussi inhiber.
Et cela reste vrai chez les adolescents et les adultes dont on peut montrer que face à des
problèmes de raisonnement logique, ils redeviennent comme le jeune enfant, intuitifs et
perceptifs – contrairement à l’intelligence abstraite et logico-mathématique décrite par Piaget
à ce dernier stade du développement. Ainsi, une erreur classique de logique (plus de 90% des
réponses), mise en évidence par le psychologue anglais Jonathan Evans, est le biais
d’appariement perceptif qui affecte le raisonnement déductif lors de tâches de réfutation ou de
vérification de règles conditionnelles.7 Pour l’exemple de la règle à réfuter « S’il n’y a pas de
carré rouge à gauche, alors il y a un cercle jaune à droite », ce biais consiste à préférer les
éléments cités dans la règle considérée (d’où la réponse erronée « carré rouge à gauche, cercle
jaune à droite », soit antécédent faux et conséquent vrai : FV) et à négliger les éléments
logiquement pertinents (une situation de type VF : par exemple, carré bleu et losange vert) dès
lors qu’ils ne sont appariés ni à l’antécédent ni au conséquent. Nos travaux de psychologie
expérimentale et d’imagerie cérébrale fonctionnelle, qui vont bientôt paraître dans le Journal
of Cognitive Neuroscience (en collaboration avec l’équipe du Pr. Bernard Mazoyer et du Dr.
Nathalie Tzourio-Mazoyer de l’Université de Caen, CEA et CNRS), indiquent qu’après un
apprentissage à l’inhibition du biais d’appariement perceptif, les sujets interrogés donnent (à
plus de 90%) une réponse logique (autre stratégie de résolution disponible en mémoire).8
Outre le fait que l’inhibition leur fait changer radicalement de mode de raisonnement lors
d’une « microgenèse » (c’est-à-dire avant et après apprentissage), le plus intéressant tient à ce
que s’opère simultanément une véritable « bascule cérébrale » de la partie postérieure du
cerveau (un réseau perceptif à la fois ventral et dorsal) à la partie antérieure : un réseau
préfrontal.

4
On peut penser qu’une telle dynamique neurale et cognitive doit être au coeur de ce qui se
passe dans le développement de l’intelligence chez l’enfant (à démontrer par les techniques
d’imagerie cérébrale), qu’il s’agisse de la construction de l’objet, du nombre, de la
catégorisation, etc., à chaque fois que se posent des problèmes de sélection de stratégies en
mémoire : par exemple, l’inhibition de la stratégie perceptive inadéquate « longueur =
nombre » dans la tâche de Piaget. Sachant que la taille relative du cortex préfrontal est la plus
importante chez les êtres humains et qu’elle diminue successivement chez les autres primates,
carnivores et rongeurs, on peut aussi penser qu’une telle dynamique postéro-antérieure,
marque de l’inhibition comportementale et cognitive, a dû jouer un rôle-clé dans l’évolution
(de la matière à l’intelligence) qui a conduit à l’Homme moderne.
Notes et références
1. Piaget, J., & Inhelder, B. (1966). La psychologie de l’enfant. Paris : PUF (Que sais-je ?).
2. Houdé, O. (1998). Développement cognitif. In O. Houdé et coll. (Eds), Vocabulaire de
sciences cognitives. Paris : PUF.
3. Houdé, O. (1995). Rationalité, développement et inhibition : Un nouveau cadre d’analyse.
Paris : PUF.
4. Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749-750.
5. Les données de Brannon & Terrace publiées dans la revue Science en 1998 (282, 746-749)
ont, en effet, mis en évidence la capacité non verbale de singes rhésus à ordonner précisément
des ensembles numériques de 1 à 9 objets, indépendamment de leurs caractéristiques
physiques de taille, de forme et de couleur.
6. Houdé, O. (1997). Numerical development : From the infant to the child. Wynn’s (1992)
paradigm in 2- and 3-year-olds. Cognitive Development, 12, 373-392. Voir aussi : Houdé, O.
(1999). De la pensée du bébé à celle de l’enfant : L’exemple du nombre. In J.-F. Dortier (Ed.)
(1999), Le cerveau et la pensée. Auxerre : Sciences Humaines Editions.
7. Evans, J. (1989). Biases in human reasoning. Hove and London : Erlbaum.
8. Houdé, O., Zago, L., Mellet, E., Moutier, S., Pineau A., Mazoyer, B., & Tzourio-Mazoyer,
N. (2000). Shifting from the perceptual brain to the logical brain : The neural impact of
cognitive inhibition training. Journal of Cognitive Neuroscience (à paraître).
Biographie
Né le 28 Juin 1963, Docteur en psychologie, Olivier Houdé est Professeur de psychologie
cognitive à l’Université René Descartes (Paris 5 - Sorbonne) et Membre junior de l’Institut
Universitaire de France. Ses recherches portent sur le développement et le fonctionnement
cognitifs, du jeune enfant à l’adulte, dans les domaines du nombre, de la catégorisation et du
raisonnement. Il articule les méthodes de la psychologie expérimentale et de la biologie
humaine (imagerie cérébrale fonctionnelle) en collaboration avec le Groupe d’imagerie
neurofonctionnelle du Professeur Bernard Mazoyer à Caen. Il est l’auteur ou co-auteur de 6
livres aux Presses Universitaires de France : Catégorisation et développement cognitif (1992),
Pensée logico-mathématique (1993), L’homme en développement (1993), Rationalité,
développement et inhibition (1995), Vocabulaire de sciences cognitives (1998) et L’esprit
piagétien. Hommage international à Jean Piaget (2000). Les travaux d’Olivier Houdé ont
également conduit à la publication de 25 articles dans des revues scientifiques spécialisées de
psychologie du développement et de neurosciences cognitives.

 

VIDEO     canal U       LIEN

 
 
 
 

Comment les polluants perturbent la maturation des poissons coralliens

 

 

 

 

 

 

 

Comment les polluants perturbent la maturation des poissons coralliens
 
L’équipe de Vincent Laudet à l’Institut de Génomique Fonctionnelle de Lyon, associée à l’équipe de David Lecchini du Centre de Recherche Insulaire et Observatoire de l’Environnement de Moorea, montre que le recrutement des larves d'un poisson corallien, le chirurgien bagnard Acanthurus triostegus, est une véritable métamorphose contrôlée par l’hormone thyroïdienne. De ce fait, cette étape cruciale du cycle de vie de ces poissons est sensible à des polluants qui perturbent ces hormones tels que le pesticide Chlorpyrifos. Ce polluant affecte la fonction écologique majeure des jeunes poissons qui s'installent sur le récif: leur capacité à brouter les algues qui sont connues pour entrer en compétition avec les coraux. Cette étude a été publiée le 30 octobre 2017 dans la revue eLife.
 
Les récifs coralliens sont des écosystèmes très riches mais qui sont actuellement en péril. On observe ainsi depuis plusieurs années un déclin des populations adultes de poissons sur de nombreux récifs coralliens. Ce déclin serait dû non seulement à une mortalité accrue des adultes, mais aussi à une baisse dans la capacité des récifs, en particulier les récifs dégradés, à attirer les larves océaniques. En effet, la plupart des poissons coralliens ont un cycle de vie en deux parties bien distinctes avec une phase larvaire pélagique, dans l’océan, et une phase juvénile/adulte inféodée au récif corallien.

L’entrée des larves dans le récif corallien est appelée le recrutement larvaire et constitue une étape critique du maintien des populations adultes dans le récif. Il a été montré que le succès du recrutement larvaire diminue fortement selon l’état de dégradation des habitats récifaux. En conséquence, les populations adultes de poissons coralliens continueront à décroître sur les récifs dégradés tant que l'intensité du recrutement larvaire ne sera pas suffisamment élevée pour contrebalancer la mortalité des adultes. Face aux prévisions alarmantes sur l'avenir des récifs coralliens, la compréhension du processus de recrutement larvaire est donc primordiale pour préserver les populations de poissons coralliens.

Les équipes de Vincent Laudet de l’Institut de Génomique Fonctionnelle de Lyon (IGFL, ENS de Lyon, CNRS UMR 5242) et de David Lecchini du Centre de Recherche Insulaire et Observatoire de l’Environnement (CRIOBE, EPHE, USR 3278) en Polynésie française, ont utilisé un poisson corallien, le chirurgien bagnard Acanthurus triostegus (un proche cousin de Dory l'héroïne du film de Pixar...), pour comprendre comment est contrôlée la transformation de la larve océanique en juvénile. Chez cette espèce une larve océanique carnivore qui se nourrit de zooplancton, est transformée en juvénile herbivore qui broute des algues dans les récifs. Les chercheurs ont démontré que cette transformation est en fait très similaire à la transformation d'un têtard en grenouille, et, comme elle, est contrôlée par l'hormone thyroïdienne. Ils ont observé que les taux d’hormone thyroïdienne présents dans l'organisme du poisson atteignent un maximum lors du recrutement larvaire du poisson chirurgienet diminuent ensuite chez les juvéniles, c'est à dire juste après la métamorphose. En outre, en manipulant l'hormone thyroïdienne, les chercheurs ont effectivement perturbé la transformation normale du poisson. Ces résultats ont pu être généralisés à d’autres espèces de poissons coralliens et permettent de conclure que le recrutement larvaire des poissons coralliens est contrôlée par l’hormone thyroïdienne.

Certains polluants environnementaux étant connus pour affecter les hormones thyroïdiennes, les chercheurs ont voulu savoir quel impact ils pouvaient avoir sur le recrutement larvaire. Ils ont ainsi traité des larves de poisson chirurgien avec du Chlorpyrifos, un pesticide très utilisé en agriculture et souvent rencontré au sein des récifs et qui est connu chez d'autres espèces pour perturber l'hormone thyroïdienne. Leurs résultats montrent que le Chlorpyrifos induit effectivement toute une série d'anomalies chez les jeunes larves de poisson chirurgien qui sont en train de se transformer. En particulier le Chlorpyrifos altère la capacité des juvéniles à devenir des herbivores efficaces et donc à se nourrir sur le gazon d'algue qui poussent sur les récifs. Le Chlorpyrifos réduit donc la qualité des juvéniles résultant de la métamorphose et diminue leur rôle écologique d'herbivores.

Or, de nombreuses études récentes suggèrent que des herbivores efficaces sont cruciaux pour l'équilibre des récifs car ils contribuent à diminuer la croissance des algues qui sont en concurrence avec les coraux. Diminuer la quantité des herbivores par une surpêche ou en affectant leur recrutement dans le récif, peut donc avoir un impact très fort sur l'équilibre global et l'état de santé des récifs coralliens.
En conclusion, ce travail fournit un cadre général pour comprendre comment le recrutement des larves de poissons peut-être altéré par des polluants environnementaux. La mise en évidence chez les larves de poissons d'une grande sensibilité à l’hormone thyroïdienne va permettre de mieux comprendre comment les facteurs de stress anthropiques peuvent affecter les populations de poissons marins au cours des phases critiques de leur cycle de vie.
 

Figure 1. Larve de poisson chirurgien bagnard Acanthurus triostegus en cours de transformation. La transparence de la larve océanique est remplacée par les bandes noires du juvénile qui commencent à apparaître.
© Marc Besson
 

Figure 2. Modèle de métamorphose des poissons coralliens et perturbation par le Chlorpyrifos. Panneau du haut : La métamorphose de la larve en juvénile est contrôlée par l’hormone thyroïdienne elle-même sous influence de l’environnement. Les populations de juvéniles et d’adultes participent à la bonne santé du récif corallien en broutant sur le gazon algal. Panneau du bas : le Chlorpyrifos perturbe le développement du juvénile et diminue son activité de broutage. L’augmentation de la quantité d’algues peut mettre en péril la survie des coraux.
© Guillaume Holzer & Marc Besson.
 
 

En savoir plus
* Fish larval recruitment to reefs is a thyroid hormone-mediated metamorphosis sensitive to the pesticide chlorpyrifos. 
Holzer G, Besson M, Lambert A, François L, Barth P, Gillet B, Hughes S, Piganeau G, Leulier F, Viriot L, Lecchini D, Laudet V.
Elife. 2017 Oct 30;6. pii: e27595. doi: 10.7554/eLife.27595
 
 



 Contacts chercheurs
* Vincent Laudet
Biologie intégrative des organismes marins (BIOM)
CNRS UMR7232 – Université P. et M. Curie 
Observatoire Oceanologique de Banyuls-sur-mer
Laboratoire Arago
UPMC - CNRS
Avenue Pierre Fabre
66650 BANYULS-SUR-MER

06 16 41 73 34

 
 
Mise en ligne le 02 novembre 2017

 

DOCUMENT       cnrs        LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solf�ège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales / Confidentialite

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon