|
|
|
|
|
 |
|
ALLÈLE |
|
|
|
|
|
Allèle
Un allèle (abréviation d'allélomorphe) est une version variable d'un même gène, c'est-à dire une forme variée qui peut être distinguée par des variations de sa séquence nucléotidique. En général, il existe deux allèles pour chaque gène, mais certains gènes (par exemple ceux du CMH) possèdent plusieurs dizaines d'allèles. Les allèles d'une paire de chromosomes homologues peuvent être identiques, c'est l'homozygotie, ou différents, c'est l'hétérozygotie.
C'est ainsi qu'au sein d'une même espèce, le génome d'un individu est différent de celui d'un autre individu, c'est le polymorphisme génétique. Ce polymorphisme est également dû à l'apparition de mutations qui sont des variations de la séquence nucléotidique. Il peut donc exister dans les populations naturelles plusieurs séquences différentes d'ADN pour un même locus.
DOCUMENT wikipédia LIEN |
|
|
|
|
 |
|
Un programme informatique capable de détecter et d’identifier automatiquement des lésions cérébrales |
|
|
|
|
|
Un programme informatique capable de détecter et d’identifier automatiquement des lésions cérébrales
COMMUNIQUÉ | 11 JUIN 2018 - 11H05 | PAR INSERM (SALLE DE PRESSE)
NEUROSCIENCES, SCIENCES COGNITIVES, NEUROLOGIE, PSYCHIATRIE | TECHNOLOGIE POUR LA SANTE
La radiologie du futur viendra-t-elle du machine learning ? C’est en tous cas ce que pensent des chercheurs de l’Inserm et d’Inria qui travaillent en collaboration au sein d’Univ. Grenoble Alpes et qui ont développé un programme capable de localiser et de diagnostiquer différents types de tumeurs cérébrales par analyse d’images d’IRM. Ces analyses ont montré des résultats de haute fiabilité avec 100% de localisations exactes et plus de 90% de diagnostics corrects du type de tumeurs. Cette méthode innovante et ses résultats font l’objet d’une étude publiée dans la revue IEEE-TMI.
L’IRM, ou imagerie par résonance magnétique, est la technique d’imagerie médicale de référence dans l’obtention d’images très détaillées du cerveau car elle permet de mettre en évidence de nombreuses caractéristiques des tissus cérébraux. L’IRM peut produire des images dites quantitatives, c’est-à-dire qui cartographient chacune un paramètre mesurable du cerveau (par exemple le débit sanguin, le diamètre vasculaire…). Bien que la qualité de ces images quantitatives soit plus indépendante du calibrage des appareils de mesure que celle des images classiques obtenues par IRM et qu’elle soit donc plus fiable, ce type de technique est encore peu utilisé en IRM clinique.
C’est sur des protocoles d’exploitation de ces images quantitatives que travaillent des chercheurs de l’Inserm en collaboration avec une équipe de recherche de d’Inria au sein d’Univ. Grenoble Alpes. Les chercheurs ont combiné différents outils mathématiques innovants, pour apprendre à un programme informatique à analyser les images quantitatives issues d’IRM cérébraux et à diagnostiquer d’éventuelles tumeurs.
Dans un premier temps, le programme a appris à reconnaître les caractéristiques de cerveaux en bonne santé. Confronté ensuite à des images de cerveaux atteints de cancers, il est ainsi devenu capable de localiser automatiquement les régions dont les caractéristiques divergent de celles des tissus en bonne santé et d’en extraire les particularités.
Enfin, pour apprendre à l’intelligence artificielle à discriminer les différents types de tumeurs, les chercheurs lui ont ensuite indiqué le diagnostic associé à chacune des images de cerveaux malades qui lui avaient été présentées.
Afin de tester les capacités du programme à différencier les tissus sains des tissus pathologiques, l’équipe de recherche lui a fourni des images qui lui étaient inconnues, issues tantôt de cerveaux en bonne santé, tantôt de cerveaux malades. Le programme devait indiquer si une tumeur était présente dans ces images et être capable de la caractériser. Et l’intelligence artificielle s’est montrée très bonne élève en réussissant à localiser parfaitement (100%) les lésions et à les diagnostiquer de façon très fiable (plus de 90%).
« Aujourd’hui, l’obtention d’images quantitatives ne correspond pas à ce qui se fait en routine clinique dans les services d’IRM », précise Emmanuel Barbier, chercheur Inserm responsable de l’étude. « Mais ces travaux montrent l’intérêt d’acquérir ce type d’images et éclairent les radiologues sur les outils d’analyse dont ils pourront disposer prochainement pour les aider dans leurs interprétations. »
D’ici là, l’équipe de recherche va s’intéresser aux images les plus pertinentes à acquérir pour diagnostiquer le plus finement et avec la plus grande fiabilité possible les tumeurs cérébrales. Elle va donc poursuivre le développement des outils mathématiques destinés à l’amélioration des capacités d’auto-apprentissage de ce programme ; l’objectif à terme étant de parvenir à étendre le potentiel diagnostique de cette intelligence artificielle à d’autres pathologies cérébrales, telles que Parkinson.
Ces outils de machine learning par IRM quantitative appliqués aux tumeurs cérébrales sont actuellement en cours d’évaluation dans le cadre du Plan Cancer porté par l’Inserm, au sein du Programme Hétérogénéité Tumorale et Ecosystème.
Leur développement dans le cadre du diagnostic de la maladie de Parkinson est également en cours via le projet pluridisciplinaire NeuroCoG sur financement IDEX de l’Université Grenoble Alpes.
DOCUMENT inserm LIEN |
|
|
|
|
 |
|
Début de la vie : comment la symétrie entre en jeu ? |
|
|
|
|
|
Début de la vie : comment la symétrie entre en jeu ?
COMMUNIQUÉ | 04 JANV. 2016 - 14H49 | PAR INSERM (SALLE DE PRESSE)
BIOLOGIE CELLULAIRE, DÉVELOPPEMENT ET ÉVOLUTION
AddThis Sharing Buttons
La première division embryonnaire, qui suit la fusion des gamètes (ovule et spermatozoïde), lance le développement d’un nouvel individu, la genèse d’un organisme adulte fonctionnel. Cette division est symétrique chez l’embryon au stade 1-cellule (aussi appelé zygote) ; elle donne lieu à la formation de deux cellules filles de taille identique. A l’inverse, elle est asymétrique chez l’ovule, qui a pourtant la même taille, et la même forme que l’œuf. Pourquoi ? Qu’est-ce qui oriente le zygote vers une division symétrique alors que l’ovule se divise au cours de la méiose de manière asymétrique ? Telles sont les questions que se sont posées Marie-Emilie Terret, chercheuse à l’Inserm, et Marie-Hélène Verlhac, chercheuse au CNRS et directrice de l’équipe Divisions asymétriques ovocytaires au Centre interdisciplinaire de recherche en biologie (Inserm/CNRS/Collège de France)[1]. En combinant biologie, physique et mathématiques, les chercheuses ont réussi à montrer, chez la souris, la mécanique de régulation qui détermine en un temps très court la géométrie et donc la destinée (division symétrique ou asymétrique) de la cellule. Les éléments issus de ces travaux pourraient dans le futur contribuer à améliorer l’efficacité de la fécondation in vitro.
Le détail de ces résultats est publié aujourd’hui dans la revue Nature communications.
L’embryon au stade 1-cellule ressemble énormément à un ovule : c’est une cellule ronde, isolée, d’une taille proche de celle de l’ovule. La géométrie de division d’une cellule est déterminée par la position du fuseau de microtubules, machinerie qui transporte et sépare les chromosomes. Dans la plupart des cellules animales, les centrosomes organisent le réseau de microtubules, essentiel à la formation et au positionnement du fuseau de division. Or, les ovules et zygotes sont dépourvus de centrosomes. Une différence majeure entre ces deux types de cellules réside cependant dans la géométrie de leurs divisions. En effet, les ovules se divisent de manière extrêmement asymétrique en taille au cours de la méiose, permettant la formation principale d’un énorme ovule unique et l’expulsion de « globules polaires » contenant le matériel génétique excédentaire. Le zygote au contraire se divise de manière parfaitement symétrique, conduisant à la formation de deux cellules filles de tailles identiques.
(Consulter le LIEN )
Ovule et embryon de souris au stade 1-cellule. Les images du haut montrent les réseaux d’actine, celles du bas les fuseaux de microtubules avec les chromosomes alignés.
(c) Marie-Emilie Terret
La géométrie de la division est déterminée par la position du fuseau de microtubules : excentrée dans les ovules, centrée chez les zygotes. L’équipe Divisions asymétriques ovocytaires a montré précédemment que le positionnement excentré du fuseau de division dans l’ovule dépend de la mécanique de réseaux d’actine. Dans le travail publié ce jour, l’équipe de chercheurs montre que la localisation centrée du fuseau de division chez le zygote est due également à la mécanique de réseaux d’actine, mais régulée différemment.
Trois étapes sont nécessaires à cette division symétrique :
1.Le centrage grossier des pronoyaux mâles et femelles, nécessitant un réseau d’actine et la myosine-Vb.
2.Le centrage fin du fuseau de division requérant une forte rigidité de l’ovocyte.
3. Le maintien passif du fuseau au centre de la cellule.
La mécanique de réseaux d’actine/myosine permet donc de passer d’une division asymétrique à une division symétrique, changement de géométrie requis pour la transition ovule-embryon.
L’équipe de recherche formule déjà des hypothèses quant au mode d’action de l’actine, qui intervient dans les caractéristiques physiques de la membrane paroi de la cellule (rigide ou molle), celles-ci influant sur la géométrie de la division.« Nos prochains travaux porteront sur l’étude plus fine des interactions entre actine et microtubules pour tenter de comprendre leurs rôles respectifs sur l’architecture de la cellule au moment de sa division, et les potentielles interventions d’autres protéines intermédiaires », explique Marie-Emilie Terret.
Mieux comprendre les caractéristiques physiques et le comportement de l’ovule, fécondé ou non, pendant sa division apportera potentiellement de nouveaux éléments utiles pour la procréation médicalement assistée. Lors de la fécondation in vitro (FIV) par exemple, la température de conservation des ovocytes pourrait avoir un impact sur la qualité des réseaux d’actine, et par conséquent affecter la division, et donc la formation d’un zygote.
Accroître l’efficacité de la FIV pourrait donc représenter un objectif à long terme pour cette équipe de recherche, une des seules en France à travailler sur cette thématique.
[1] En collaboration avec des chercheurs du Laboratoire analyse et modélisation pour la biologie et l’environnement (CNRS/CEA/Université d’Evry Val d’Essonne/Université de Cergy Pontoise), du Laboratoire de physique théorique de la matière condensée (CNRS/UPMC), du Laboratoire Physico-chimie Curie (CNRS/Institut Curie/UPMC).
DOCUMENT inserm LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 ] Précédente - Suivante |
|
|
|
|
|
|