ecole de musique piano
     
menu
 
 
 
 
 
 

REPRODUIRE L'EVOLUTION DES BACTERIES DANS UN TUBE A ESSAI

 

Paris, 20 décembre 2012

Reproduire et comprendre l'évolution des bactéries dans un tube à essai
La capacité des bactéries à produire des mutations, et donc à s'adapter, évolue en fonction de leur environnement et de leur niveau d'adaptation. C'est ce que viennent de montrer des chercheurs du Laboratoire adaptation et pathogénie des micro-organismes (LAPM, CNRS/Université Joseph Fourier-Grenoble) (1), en collaboration avec le Génoscope (CEA/IG-Evry). Les mutations du génome des bactéries participent à leur capacité d'adaptation et sont, par exemple, responsables de l'émergence de bactéries multi-résistantes aux antibiotiques ou de bactéries pathogènes responsables d'infections nosocomiales. Comprendre l'évolution des mécanismes qui contrôlent l'apparition des mutations est donc essentiel pour améliorer la lutte contre ces micro-organismes. Ces résultats viennent d'être publiés dans la revue Proceedings of the National Academy of Science (PNAS).
Les mutations de l'ADN sont à l'origine des variations qui permettent l'évolution des organismes vivants. Elles peuvent avoir des effets positifs, négatifs ou neutres, et c'est l'équilibre entre ces différents effets qui va conduire à l'adaptation des organismes vivants à leur environnement. Comprendre comment la production de mutations varie au cours du temps est donc indispensable pour décrire les processus évolutifs.

L'équipe dirigée par Dominique Schneider au sein du LAPM a utilisé la plus longue expérience d'évolution en cours dans le monde pour appréhender cette question. Dans le cadre de ce projet, des populations bactériennes ont été initiées à partir d'une cellule unique d'Escherichia coli (« l'ancêtre ») et sont cultivées nuit et jour, 365 jours par an, depuis 1988. Les chercheurs effectuent des prélèvements à intervalles réguliers sur ces populations, et les conservent, ce qui permet d'obtenir de véritables archives fossiles vivantes et d'analyser leur évolution. Au cours de cette longue expérience qui représente aujourd'hui plus de 55 000 générations (ce qui, à l'échelle humaine, correspond à près de deux millions d'années), les chercheurs ont identifié une population de bactéries qui a vu sa capacité à produire des mutations augmenter de plus de 100 fois, constituant ce que les généticiens appellent une population hypermutatrice, avant de constater que cette capacité continuait à évoluer…

En pratique, les chercheurs ont séquencé l'intégralité du génome bactérien à différents temps au cours de l'évolution (171 clones bactériens au total, séquençage réalisé par le Génoscope). Les données de séquençage ont été intégrées à la plateforme MicroScope (2), développée au Génoscope, et comparées au génome de l'ancêtre. Après 20 000 générations, ils ont observé une augmentation très importante du nombre de mutations, la population étant devenue hypermutatrice. En effet, d'une moyenne d'environ 40 à 50 mutations par génome à 20 000 générations, les bactéries sont passées à une moyenne de plus de 700 mutations à 40 000 générations. Mais le plus étonnant est que cette évolution s'est produite en plusieurs étapes avec une augmentation massive du taux de mutation suivie d'une diminution de ce taux de mutation.

L'équipe de Dominique Schneider a pu décrypter les mécanismes moléculaires mis en jeu dans ce processus multi-étapes, en analysant la séquence des génomes entiers de ces bactéries. Au niveau évolutif, cette population bactérienne est passée successivement d'une étape où le taux de mutation était élevé, ce qui lui a permis de s'adapter à son environnement, à une étape où le taux de mutation a diminué mais est resté à un niveau intermédiaire, ce qui lui a permis de poursuivre son adaptation en conservant une probabilité plus élevée de « trouver » des mutations bénéfiques, tout en réduisant la proportion de mutations néfastes.

Grâce à cette expérience d'évolution en tube à essai, les chercheurs ont pu comprendre les différentes étapes qui président in vivo à l'apparition de bactéries mutantes. De telles bactéries hypermutatrices sont connues pour être associées à de graves problèmes de santé publique, comme l'apparition de maladies nosocomiales et de bactéries multi-résistantes aux antibiotiques, ou de certains types de tumeurs chez les eucaryotes (3). Les chercheurs espèrent que le décryptage de ce processus au niveau de génomes entiers va permettre de modéliser le comportement des bactéries pathogènes, de contrôler leurs capacités d'adaptation, et, à terme, de développer de nouveaux outils thérapeutiques pour faire face aux infections bactériennes.

DOCUMENT         CNRS             LIEN

 
 
 
 

ARTERES ET VEINES

 

Artères et veines, un mariage forcé


Une équipe pluridisciplinaire, composée de physiciens et de biologistes français et allemands(1), vient de découvrir comment, chez l'embryon, les artères et les veines se développent en paires parallèles. Grâce à des mesures physiques, des modèles théoriques et des simulations numériques, les chercheurs montrent comment la croissance des artères oriente directement celle des veines par un processus dépendant uniquement des forces mécaniques en présence. Ces travaux sont publiés en ligne sur le site de la revue Physical Review E(2).
Un réseau vasculaire extraordinairement complexe, composé d’artères, de capillaires et de veines, parcourt l'organisme des vertébrés. Il apporte à chaque cellule l'oxygène et les nutriments nécessaires et permet d’évacuer les déchets métaboliques produits. Ce réseau contient un si grand nombre de branches que les positions de chaque vaisseau ne peuvent pas être codées génétiquement. Cependant, la génétique est souvent évoquée pour expliquer le fait que, chez l'adulte, les artères et les veines cheminent très fréquemment par paires parallèles, une artère étant même souvent encadrée par deux veines qui lui sont strictement parallèles. Pendant le développement embryonnaire une «conversation génétique» artères/veines permettrait en effet d’interpréter ce phénomène.

Dans leur article paru dans Physical Review E, les chercheurs montrent comment des phénomènes physiques (mécaniques, hydrodynamiques et élastiques) conduisent à un développement parallèle des artères et des veines.
Une étude détaillée du développent spatial et temporel des artères et des veines au stade embryonnaire montre qu'une métamorphose de l'arborescence vasculaire se produit spontanément en cours de croissance. Au stade embryonnaire précoce, on observe une organisation spatiale en série, où les artères et les veines sont situées dans des régions distinctes de l’espace. Puis rapidement, après quelques jours de développement embryonnaire, de nouvelles veines se développent en parallèle des artères existantes et les territoires vasculaires s’entrelacent.
A partir de visualisations du réseau vasculaire et de la mesure de paramètres mécaniques locaux réalisées in situ, les chercheurs démontrent que cette métamorphose est initiée par la croissance des artères. A leur voisinage, on observe une réponse visco-élastique du tissu vivant, se traduisant par un gonflement. Cette réponse entraîne à son tour une augmentation de la perméabilité du lit capillaire, très localisée dans des zones parfaitement parallèles aux artères précédemment formées. Ces zones de forte conductivité sont sélectionnées par l'écoulement sanguin qui y circule plus favorablement, puis remodelées en veines, dès que le tissu atteint une taille critique, qui a été prédite théoriquement. Des simulations numériques de l’écoulement sanguin réalisées dans des réseaux vasculaires idéalisés d’organes, à différents stades de croissance, ont confirmé ces résultats.

Ce travail apporte un éclairage nouveau sur l’importance de la mécanique dans le développement embryonnaire. Il existe dans les embryons un paysage de forces mécaniques formant une dentelle de régions dures ou molles, qui évolue spontanément sous l’action des poussées exercées par les cellules. Analyser la composante physique des différents actes du scénario du développement embryonnaire permettra de comprendre la cause des aberrations du développement ou des pathologies causées par des gènes défectueux, qui altèrent les propriétés physiques du tissu.

DOCUMENT           CNRS             LIEN

 
 
 
 

RECEPTEUR DE LA VITAMINE D

 

Paris, 17 janvier 2012

Récepteur de la vitamine D : première observation 3D en intégralité
Pour la première fois, une équipe de l'Institut de génétique et de biologie moléculaire et cellulaire (IGBMC, Université de Strasbourg/CNRS/Inserm) a réussi à photographier en entier, en 3D et à haute résolution (1), une petite molécule vitale, enfermée au cœur de nos cellules : le récepteur de la vitamine D (VDR). Publiée le 18 janvier 2012 dans la revue The EMBO Journal, cette étude apporte des informations clefs sur la structure 3D et le mécanisme d'action du récepteur au niveau moléculaire. Ces données sont cruciales pour la recherche pharmaceutique, le VDR étant impliqué dans de nombreuses maladies, comme les cancers, le rachitisme et le diabète de type 1.
Appartenant à ce que les biologistes appellent « la grande famille des récepteurs nucléaires », des protéines actives dans le noyau des cellules, dont font aussi partie les récepteurs « stéroïdiens » (récepteurs aux hormones sexuelles, etc.), le récepteur de la vitamine D (VDR pour vitamine D receptor) joue un rôle primordial. Il régule l'expression de gènes impliqués dans diverses fonctions biologiques vitales (croissance des cellules, minéralisation des os,...).

Jusqu'ici, les chercheurs n'avaient pu étudier de près que deux parties de ce récepteur : la région en interaction avec l'ADN et le domaine liant la vitamine D. Ces deux morceaux avaient été produits en laboratoire et leur structure étudiée individuellement avec la technique de cristallographie. Cette méthode n'avait pas permis de visualiser le VDR en entier car il s'est avéré difficile à cristalliser.

Pour relever ce défi - qui mobilise plusieurs équipes dans le monde depuis plus de 15 ans -, les groupes de Bruno Klaholz et de Dino Moras, tous deux directeurs de recherche CNRS à l'IGBMC, ont utilisé une technique innovante : la cryo-microscopie électronique (cryo-ME), qui nécessite un microscope électronique de dernière génération, dit « à haute résolution ». Ce bijou de technologie permet de visualiser des objets biologiques à l'échelle moléculaire, voire atomique. En France, le premier a été installé en 2008 à l'IGBMC (2). Avant ces travaux, beaucoup pensaient impossible l'étude du VDR avec la cryo-ME. En effet, jusqu'ici, les plus petites molécules visualisées avec cette technique pesaient plus de 300 kilodaltons (3) (kDa), voire quelques milliers de kDa, soit beaucoup plus que le VDR, qui pèse 100 kDa et mesure tout juste 10 nm (10 x 10-9 m).

Concrètement, Bruno Klaholz et ses collègues ont produit en laboratoire de grandes quantités du récepteur VDR humain dans des bactéries Escherichia coli (l'un des modèles les plus utilisés en biologie pour produire des protéines). Puis ils ont isolé le récepteur dans une solution physiologique contenant de l'eau et un peu de sel. L'échantillon contenant le VDR a ensuite été congelé en le plongeant dans de l'éthane liquéfié, ce qui permet un refroidissement extrêmement rapide (en une fraction de seconde, l'échantillon passe de 25°C à environ -184°C). Il a fallu, enfin, prendre 20 000 photos de particules du VDR dans différentes orientations à l'aide du microscope. Ce sont ces images qui, alignées et combinées grâce à un programme informatique, ont fourni, au final, une reconstruction en 3 D du VDR.

Cette image apporte des informations inédites sur le fonctionnement du récepteur. Elle révèle que le VDR et son partenaire RXR (récepteur du rétinoïde X, un dérivé de la vitamine A) forment une architecture ouverte, avec le domaine de liaison de la vitamine D orienté presque perpendiculairement au domaine de liaison à l'ADN (voir figure ci-dessous). Cette structure suggère une coopération entre les deux domaines, qui agiraient ensemble pour induire une régulation très fine de l'expression des gènes cibles.

Pionnier, ce travail ouvre la voie à l'étude de plusieurs autres récepteurs nucléaires vitaux encore mal étudiés. Notamment, les biologistes pensent désormais à utiliser la cryo-ME pour révéler la structure des récepteurs stéroïdiens.

DOCUMENT          CNRS            LIEN

 
 
 
 

REPARATION DE L'ADN

 

Paris, 7 septembre 2012

Observer en temps réel la réparation d'une seule molécule d'ADN
L'ADN est sans cesse endommagé par des agents environnementaux tels que les rayons ultra-violets ou certaines molécules de la fumée de cigarette. Sans arrêt, les cellules mettent en œuvre des mécanismes de réparation de cet ADN d'une efficacité redoutable. Une équipe de l'Institut Jacques Monod (CNRS/Université Paris Diderot), en collaboration avec des chercheurs des universités de Bristol en Angleterre et Rockefeller aux Etats-Unis, est parvenue à suivre en direct, pour la première fois, les étapes initiales de l'un de ces systèmes de réparation de l'ADN encore peu connu. Grâce à une technique inédite appliquée à une molécule unique d'ADN sur un modèle bactérien, les chercheurs ont compris comment plusieurs acteurs interagissent pour réparer l'ADN avec une grande fiabilité. Publiés dans Nature le 9 septembre 2012, leurs travaux visent à mieux comprendre l'apparition de cancers et comment ils deviennent résistants aux chimiothérapies.
Les rayons ultra-violets, la fumée de tabac ou encore les benzopyrènes contenus dans la viande trop cuite provoquent des altérations au niveau de l'ADN de nos cellules qui peuvent conduire à l'apparition de cancers. Ces agents environnementaux détériorent la structure même de l'ADN, entraînant notamment des dégâts dits « encombrants » (comme la formation de ponts chimiques entre les bases de l'ADN). Pour identifier et réparer ce type de dégâts, la cellule dispose de plusieurs systèmes, comme la « réparation transcriptionellement-couplée » (ou TCR pour Transcription-coupled repair system) dont le mécanisme d'action complexe reste encore aujourd'hui peu connu. Des anomalies dans ce mécanisme TCR, qui permet une surveillance permanente du génome, sont à l'origine de certaines maladies héréditaires comme le Xeroderma pigmentosum qui touche les « enfants de la Lune », hypersensibles aux rayons ultra-violets du Soleil.

Pour la première fois, une équipe de l'Institut Jacques Monod (CNRS/Université Paris Diderot), en collaboration avec des chercheurs des universités de Bristol en Angleterre et Rockefeller aux Etats-Unis, a réussi à observer les étapes initiales du mécanisme de réparation TCR sur un modèle bactérien. Pour y parvenir, les chercheurs ont employé une technique inédite de nanomanipulation de molécule individuelle(1) qui leur a permis de détecter et suivre en temps réel les interactions entre les molécules en jeu sur une seule molécule d'ADN endommagée. Ils ont élucidé les interactions entre les différents acteurs dans les premières étapes de ce processus TCR. Une première protéine, l'ARN polymérase(2), parcourt normalement l'ADN sans encombre mais se trouve bloquée lorsqu'elle rencontre un dégât encombrant, (tel un train immobilisé sur les rails par une chute de pierres). Une deuxième protéine, Mfd, se fixe à l'ARN polymérase bloquée et la chasse du rail endommagé afin de pouvoir ensuite y diriger les autres protéines de réparation nécessaires à la réparation du dégât. Les mesures de vitesses de réaction ont permis de constater que Mfd agit particulièrement lentement sur l'ARN polymérase : elle fait bouger la polymérase en une vingtaine de secondes. De plus, Mfd déplace bien l'ARN polymérase bloquée mais  reste elle-même ensuite associée à l'ADN pendant des temps longs (de l'ordre de cinq minutes), lui permettant de coordonner l'arrivée d'autres protéines de réparation au site lésé.

Si les chercheurs ont expliqué comment ce système parvient à une fiabilité de presque 100%, une meilleure compréhension de ces processus de réparation est par ailleurs essentielle pour savoir comment apparaissent les cancers et comment ils deviennent résistants aux chimiothérapies.

DOCUMENT           CNRS             LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solf�ège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales / Confidentialite

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon