ecole de musique piano
     
menu
 
 
 
 
 
 

LE SABLE ET LE VERRE

 

Paris, 16 avril 2012

Première visualisation de la transformation du sable en verre
Déjà connu des anciens Égyptiens, le verre est l'un des matériaux les plus anciens fabriqués par l'homme. Pourtant, sa formation à partir de poudres granulaires chauffées à plus de 1000°C comporte encore des zones d'ombre. Pour la première fois, une équipe pilotée par le laboratoire Surface du verre et interfaces (CNRS/Saint-Gobain) (1), est parvenue à visualiser la formation de ce matériau en temps réel et de l'intérieur même de l'échantillon grâce à la tomographie X, technique d'imagerie 3-D. Ces expériences, réalisées à l'ESRF (European Synchrotron Radiation Facility), permettent de mieux comprendre comment les différentes matières premières réagissent entre elles pour se transformer en verre. L'une des motivations de ces travaux, publiés sur le site de The Journal of the American Ceramic Society, est d'obtenir du verre de bonne qualité à des températures inférieures à celles utilisées actuellement par l'industrie.
Les chercheurs ont étudié un mélange proche de celui utilisé pour fabriquer le verre à vitres, composé de deux tiers de sable de silice, et d'un tiers de carbonates de sodium et de calcium. Dans les fours industriels, ce mélange est porté à 1500°C et doit rester plusieurs jours dans le four pour supprimer les bulles ou les défauts cristallins. Le processus demande donc beaucoup d'énergie, et l'un des enjeux industriels est d'obtenir du verre de bonne qualité à des températures moins élevées. Mais pour cela, il est nécessaire de comprendre les différentes étapes de la transformation des matières premières, ainsi que le couplage entre les réactions chimiques et la microstructure du mélange initial.

Pour ce faire, les chercheurs ont observé, pour la première fois, la réaction en train de se produire grâce à la tomographie X. La puissante ligne de lumière ID15a du synchrotron européen situé à Grenoble, a permis d'obtenir in situ une image en 3D toutes les quinze secondes de la réaction en cours, et ceci avec une résolution spatiale de 1,6 microns. Ainsi, les chercheurs ont pu observer les contacts qui s'opèrent entre les éléments présents, et la transformation de matériaux granulaires en verre fondu.

Ces images uniques révèlent l'importance des contacts entre grains d'espèces différentes. Ce sont eux qui déterminent si les réactions menant à la production du verre liquide se produisent ou pas. Par exemple, selon l'absence ou la présence de tels contacts, le carbonate de calcium peut soit être incorporé à un liquide très réactif, soit produire des défauts cristallins. Les chercheurs ont aussi été surpris de la haute réactivité du carbonate de sodium à l'état solide: sa grande mobilité avant la fonte des matériaux augmente le nombre de contacts avec les autres grains, ce qui favorise les réactions.

Les chercheurs veulent à présent réaliser de nouvelles expériences en faisant varier la taille des grains ou la montée en température. À long terme, ces travaux fondamentaux pourraient donner des clés pour réduire la quantité de défauts produits au début de la formation du verre, et trouver ainsi des procédés de fabrication plus rapides et moins gourmands en énergie. En outre, ils espèrent développer les méthodes d'imagerie et de traitement des données pour permettre aux chercheurs et aux industriels d'imager la transformation d'autres mélanges granulaires réactifs intervenant dans l'élaboration de verres et matériaux différents.

DOCUMENT         CNRS         LIEN

 
 
 
 

NANO-FIBRES PLASTIQUES

 

Paris, 20 AVRIL 2012

Des nano-fibres plastiques hautement conductrices qui se construisent « toutes seules »


Deux équipes du CNRS et de l'Université de Strasbourg, menées par Nicolas Giuseppone 1 et Bernard Doudin2, ont réussi à fabriquer des fibres plastiques fortement conductrices, de quelques nanomètres d'épaisseur. Ces nano-fils, qui font l'objet d'un brevet déposé par le CNRS, se construisent « tout seuls » sous la seule action d'un flash lumineux ! Peu coûteux à obtenir et faciles à manipuler contrairement aux nanotubes de carbone3, ils allient les avantages des deux matériaux utilisés à ce jour pour conduire le courant électrique : les métaux et les polymères organiques plastiques4. En effet, leurs remarquables propriétés électriques sont proches de celles des métaux. De plus, ils sont légers et souples comme les plastiques. De quoi relever l'un des plus importants défis de l'électronique du 21e siècle : miniaturiser ses composants jusqu'à l'échelle nanométrique. Ces travaux sont publiés le 22 avril 2012 dans l'édition en ligne avancée de la revue Nature Chemistry. Prochaine étape : démontrer que ces fibres peuvent être intégrées industriellement dans des appareils électroniques comme les écrans souples, les cellules solaires, etc.
Lors de précédents travaux publiés en 20105, Nicolas Giuseppone et ses collègues étaient  parvenus à obtenir pour la première fois des nano-fils. Pour ce faire, ils avaient modifié chimiquement des molécules de synthèse utilisées depuis plusieurs dizaines d'années dans l'industrie pour le processus de photocopie Xerox® : les « triarylamines ». A leur grande surprise, ils avaient observé qu'à la lumière et en solution, leurs nouvelles molécules s'empilaient spontanément de manière régulière pour former des fibres miniatures. Ces fils longs de quelques centaines de nanomètres (1 nm = 10-9 m, soit un milliardième de mètre), sont constitués par l'assemblage dit «supramoléculaire » de plusieurs milliers de molécules.

Les chercheurs ont ensuite étudié en détail, en collaboration avec l'équipe de Bernard Doudin, les propriétés électriques de leurs nano-fibres. Cette fois-ci, ils ont mis leurs molécules en contact avec un microcircuit électronique comportant des électrodes en or séparées de 100 nm. Puis ils ont appliqué un champ électrique entre celles-ci.

DOCUMENT          CNRS             LIEN

 

 
 
 
 

NEUTRINOS

 

Paris, 15 juin 2011

Des neutrinos en flagrant délit de métamorphose


Pour la première fois, les physiciens de l'expérience T2K au Japon, parmi lesquels ceux du CNRS (1) et du CEA/Irfu, annoncent avoir très probablement détecté une transformation de neutrinos muons en neutrinos électrons. L'observation - probable à plus de 99% - de ce phénomène constituerait une découverte majeure pour la compréhension de la physique des particules élémentaires et ouvrirait la voie à de nouvelles études sur l'asymétrie entre la matière et l'antimatière.
Les neutrinos existent sous trois formes ou « saveurs » : les neutrinos électrons, muons et tau. L'expérience T2K, située au Japon, étudie le mécanisme d'oscillation de ces particules, c'est-à-dire la faculté qu'elles ont à se transformer en une autre saveur dans leurs déplacements. Son principe est d'observer les oscillations des neutrinos sur une distance de 295 km, entre les sites de Tokai, où les neutrinos muons sont produits grâce à l'accélérateur de particules de JPARC (2) sur la côte est du Japon, et le détecteur Super-Kamiokande, une cuve d'eau cylindrique de 40 mètres de diamètre et 40 mètres de hauteur située à 1 000 mètres sous terre, près de la côte ouest (d'où son nom T2K, qui signifie « de Tokai à Kamiokande »).

Les analyses des données collectées entre la mise en service de l'expérience en janvier 2010 et mars 2011 (l'expérience a été arrêtée avec le séisme du 11 mars) montrent que durant cette période, le détecteur Super-Kamiokande a enregistré un total de 88 neutrinos, parmi lesquels 6 neutrinos électrons qui proviendraient de la métamorphose de neutrinos muons en neutrinos électrons. Les 82 neutrinos restants seraient essentiellement des neutrinos muons n'ayant subi aucune transformation entre leur point de production et leur détection. Des mesures utilisant un GPS certifient que les neutrinos identifiés par le détecteur Super-Kamiokande ont bel et bien été produits sur la côte est du Japon. Les physiciens estiment ainsi que les résultats obtenus correspondent à une probabilité de 99,3% de découverte de l'apparition des neutrinos électrons.

L'expérience T2K redémarrera dès la fin de cette année. Bien que situés dans une zone sismique proche de l'épicentre du tremblement de terre du 11 mars 2011, le laboratoire JPARC et les détecteurs proches de T2K n'ont subi heureusement que des dégâts minimes. Le prochain objectif de T2K est de confirmer avec davantage de données l'apparition des neutrinos électrons et, mieux encore, de mesurer le dernier « angle de mélange », un paramètre du modèle standard qui ouvrirait la voie aux études de l'asymétrie entre la matière et l'antimatière dans notre Univers.

La collaboration T2K regroupe plus de 500 physiciens de 62 institutions réparties dans 12 pays (Japon, pays européens et États-Unis). Les équipes du CNRS et du CEA/Irfu ont mis au point certains instruments de mesure utilisés dans les détecteurs proches (situés à 280 mètres du point de production des neutrinos et nécessaires à contrôler l'expérience) et participé à la calibration du détecteur Super-Kamiokande. Elles ont également contribué à l'analyse des données.

DOCUMENT             CNRS               LIEN

 
 
 
 

LES NEUTRINOS

 

Paris, 15 juin 2011

Des neutrinos en flagrant délit de métamorphose


Pour la première fois, les physiciens de l'expérience T2K au Japon, parmi lesquels ceux du CNRS (1) et du CEA/Irfu, annoncent avoir très probablement détecté une transformation de neutrinos muons en neutrinos électrons. L'observation - probable à plus de 99% - de ce phénomène constituerait une découverte majeure pour la compréhension de la physique des particules élémentaires et ouvrirait la voie à de nouvelles études sur l'asymétrie entre la matière et l'antimatière.
Les neutrinos existent sous trois formes ou « saveurs » : les neutrinos électrons, muons et tau. L'expérience T2K, située au Japon, étudie le mécanisme d'oscillation de ces particules, c'est-à-dire la faculté qu'elles ont à se transformer en une autre saveur dans leurs déplacements. Son principe est d'observer les oscillations des neutrinos sur une distance de 295 km, entre les sites de Tokai, où les neutrinos muons sont produits grâce à l'accélérateur de particules de JPARC (2) sur la côte est du Japon, et le détecteur Super-Kamiokande, une cuve d'eau cylindrique de 40 mètres de diamètre et 40 mètres de hauteur située à 1 000 mètres sous terre, près de la côte ouest (d'où son nom T2K, qui signifie « de Tokai à Kamiokande »).

Les analyses des données collectées entre la mise en service de l'expérience en janvier 2010 et mars 2011 (l'expérience a été arrêtée avec le séisme du 11 mars) montrent que durant cette période, le détecteur Super-Kamiokande a enregistré un total de 88 neutrinos, parmi lesquels 6 neutrinos électrons qui proviendraient de la métamorphose de neutrinos muons en neutrinos électrons. Les 82 neutrinos restants seraient essentiellement des neutrinos muons n'ayant subi aucune transformation entre leur point de production et leur détection. Des mesures utilisant un GPS certifient que les neutrinos identifiés par le détecteur Super-Kamiokande ont bel et bien été produits sur la côte est du Japon. Les physiciens estiment ainsi que les résultats obtenus correspondent à une probabilité de 99,3% de découverte de l'apparition des neutrinos électrons.

L'expérience T2K redémarrera dès la fin de cette année. Bien que situés dans une zone sismique proche de l'épicentre du tremblement de terre du 11 mars 2011, le laboratoire JPARC et les détecteurs proches de T2K n'ont subi heureusement que des dégâts minimes. Le prochain objectif de T2K est de confirmer avec davantage de données l'apparition des neutrinos électrons et, mieux encore, de mesurer le dernier « angle de mélange », un paramètre du modèle standard qui ouvrirait la voie aux études de l'asymétrie entre la matière et l'antimatière dans notre Univers.

La collaboration T2K regroupe plus de 500 physiciens de 62 institutions réparties dans 12 pays (Japon, pays européens et États-Unis). Les équipes du CNRS et du CEA/Irfu ont mis au point certains instruments de mesure utilisés dans les détecteurs proches (situés à 280 mètres du point de production des neutrinos et nécessaires à contrôler l'expérience) et participé à la calibration du détecteur Super-Kamiokande. Elles ont également contribué à l'analyse des données.

DOCUMENT          CNRS              LIEN

 

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solf�ège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales / Confidentialite

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon