|
|
|
|
 |
|
CELLULES SOUCHES... |
|
|
|
|
|
Des cellules souches pour créer des organes par impression 3D
Par Janlou Chaput, Futura-Sciences Partager Le bioprinting, ou l’impression de tissus humains, pourrait prendre un nouveau tournant. Pour la première fois, des scientifiques ont réussi à construire une imprimante 3D capable de déposer des cellules souches embryonnaires humaines sans les détruire ni leur faire perdre leur pluripotence. De quoi susciter les plus gros fantasmes, comme la régénération d’organes entiers.
Le progrès passe parfois par la combinaison de différentes technologies. L’impression 3D permet depuis quelques années de fabriquer des objets en empilant une à une des couches de résine ou de plastique. Certains biologistes ont alors eu l’idée de remplacer le plastique par des cellules, afin de créer des structures organiques.
De premiers succès ont déjà été obtenus. Par exemple, en novembre dernier, des scientifiques ont utilisé cette méthode pour recréer du cartilage. Le résultat, injecté chez des souris, était parfaitement fonctionnel. D’autres expériences similaires ont été réussies, y compris avec des cellules souches embryonnaires (CSE) de rongeurs.
Ces cellules sont particulières car elles sont pluripotentes, c’est-à-dire qu’elles ont la capacité de se différencier en n’importe quel tissu de l’organisme. On les trouve aussi chez l’Homme et on les a d’ailleurs testées en impression 3D. Cependant, elles sont plus fragiles que celles retrouvées chez la souris et n’ont pas tenu le choc.
Des cellules souches embryonnaires survivent à l’impression 3D
Des scientifiques de l’Heriot-Watt University d'Édimbourg (Écosse) annoncent cependant avoir probablement réussi à outrepasser le problème. Leur système, décrit dans la revue Biofabrication, a épargné la quasi-totalité des cellules souches humaines tout en leur permettant de garder leurs propriétés intrinsèques, celles qui nous intéressent en médecine régénérative.
Voici l'imprimante 3D conçue par les scientifiques. Grâce à son système de valves et d'air comprimé, elle permet aux cellules souches embryonnaires de survivre au jet d'encre. © Will Shu, Biofabrication
La machine est pilotée par ordinateur. Elle dispose de deux encres biologiques : l’une contient les cellules souches dans un milieu de culture servant à les alimenter, quand l’autre ne contient que ce milieu.
Grâce à un système à air comprimé contrôlé par l’ouverture ou la fermeture d’une microvalve, les quantités déposées sont extrêmement précises. Ainsi, les auteurs peuvent déposer uniquement cinq cellules s’il le faut. Grâce à la superposition des couches, ils ont obtenu des gradients de concentration en CSE. Les cellules se regroupent alors en amas sphériques dont la taille est parfaitement contrôlée.
Des organes artificiels ? C'est encore un peu tôt
Un jour après l’opération, plus de 95 % des CSE étaient encore vivantes, et 89 % des cellules résistaient, encore 48 h plus tard. L’utilisation d’un marqueur a par ailleurs révélé qu’elles n’avaient pas perdu leur pluripotence. La preuve que le concept fonctionne.
Nous sommes tout de même encore loin de la création d’organes complexes par des imprimantes 3D, même si de la peau et du tissu musculaire ont déjà pu être mis au point. Pourquoi ? Un foie, un cœur ou encore un rein demandent un système vasculaire important qu’on ne peut encore fournir, même si certains laboratoires travaillent à l’élaboration de vaisseaux sanguins artificiels.
Cependant, même si ce fantasme n’est pas encore à portée de main, des tissus artificiels fabriqués rapidement et à moindre coût pourraient servir à imiter des organes, afin de tester l’effet de molécules médicamenteuses. L’opportunité de limiter les essais pharmacologiques menés sur les animaux. Pour le moment, les techniques de bioprinting sont encore à leurs prémices mais les avancées laissent supposer qu’un jour les imprimantes 3D biologiques feront partie de l’équipement de base des laboratoires de biologie cellulaire.
DOCUMENT FUTURA-SCIENCES.COM LIEN |
|
|
|
|
 |
|
ABEILLES... |
|
|
|
|
|
Paris, 12 mai 2011
Comment les abeilles adaptent-elles leur vitesse pour éviter les obstacles ?
A l'inverse des humains, les abeilles sont dotées d'une vision dorsale leur permettant d'esquiver les obstacles situés au-dessus de leur tête. Cette vision dorsale participe-t-elle au contrôle de leur vitesse ? Eh bien oui ! L'abeille se révèle capable d'ajuster sa vitesse en fonction des distances qui la séparent des obstacles, y compris dorsaux. Cela lui est possible grâce au défilement visuel perçu, notamment au-dessus de sa tête. C'est ce que viennent de démontrer expérimentalement des bioroboticiens de l'Institut des sciences du mouvement (CNRS / Université de la Méditerranée). Pour parvenir à ces résultats, les chercheurs ont, au préalable, modélisé la navigation en vol de cet insecte dans les trois dimensions. Leurs travaux sont publiés le 12 mai 2011 dans la revue PLoS One.
Comment une créature aussi minuscule que l'abeille, dont le cerveau est plus petit que celui d'un oiseau, parvient-elle à contrôler son vol et ainsi, à éviter les obstacles en vol ou au sol ? On sait aujourd'hui que les prouesses sensori-motrices de ces miniatures volantes reposent sur un système nerveux composé de cent mille à un million de neurones. Lorsque l'insecte vole au-dessus du sol, l'image de l'environnement défile d'avant en arrière dans son champ visuel, créant ainsi un flux optique défini comme la vitesse angulaire à laquelle défilent les contrastes présents dans l'environnement. Par définition, ces flux optiques sont fonction du rapport entre la vitesse et les distances aux surfaces.
Pour prédire le vol des abeilles, les chercheurs ont conçu, il y a un an, un modèle de simulation appelé ALIS. A partir de données essentiellement visuelles (objets présents, déplacement de ces objets…), ce dispositif permet après traitement informatique, de reproduire les trajectoires des insectes. Ces spécialistes en biorobotique ont ensuite construit une chambre de vol aux formes géométriques complexes que les abeilles butineuses ont appris, petit à petit, à traverser pour aller récolter une récompense d'eau sucrée. Cette chambre est dotée de plusieurs rétrécissements où le sol et le plafond, puis les parois latérales se rapprochent. Les chercheurs ont ainsi observé que l'abeille diminue sa vitesse proportionnellement à la section minimale de la chambre de vol, que la section minimale soit horizontale ou bien verticale. Autrement dit, l'animal ralentit sa vitesse de vol dès lors qu'un obstacle se rapproche. Sa vitesse dépend de l'encombrement de son champ visuel et donc de la distance aux obstacles. Ce comportement est parfaitement prédit en simulation par le modèle ALIS : les trajectoires d'abeille volant dans la chambre de vol correspondent parfaitement aux trajectoires d'insecte virtuel prédites par modélisation.
Les scientifiques proposent l'existence de régulateurs qui maintiennent les flux optiques, en d'autres termes les rapports vitesse/distances perçus visuellement, à des valeurs constantes. Ainsi, si l'insecte vole dans un environnement qui devient de plus en plus encombré, son « régulateur automatique » le contraindrait à diminuer sa vitesse de manière à maintenir constant le rapport vitesse/distances. Le modèle de « régulateur de flux optique » permet de comprendre comment une abeille parvient à voler sans jamais avoir besoin de mesurer ni sa vitesse, ni sa position par rapport aux parois. Elle s'affranchit ainsi des capteurs de l'aéronautique traditionnelle, comme les radars doppler qui délivrent la vitesse par rapport à sol. Ces capteurs ultra-précis présentent l'inconvénient d'être encombrants, onéreux et gourmands en énergie. Ces travaux illustrent le double enjeu, fondamental et appliqué, de la biorobotique et pourraient trouver des applications dans l'aérospatial, tant sont cruciales les phases où un avion vole en environnement confiné.
DOCUMENT CNRS LIEN |
|
|
|
|
 |
|
SYSTEME ENDOCRINIEN ET...MEMOIRE |
|
|
|
|
|
Paris, 3 janvier 2012
Notre système endocrinien a de la mémoire !
Quand on vous parle de mémoire, vous pensez au cerveau ! Peut-être aussi à notre système immunitaire qui garde en mémoire certaines informations pour réagir de manière plus efficace lorsqu'un virus ou une bactérie nous infecte une deuxième fois. Mais auriez-vous imaginé que nos glandes endocrines se souviennent également de certaines choses ? A l'instar du cerveau, une équipe de chercheurs de l'Inserm et du CNRS dirigée par Patrice Mollard à l'Institut de génomique fonctionnelle1(Montpellier) vient de montrer, chez la souris, que les cellules endocrines hypophysaires qui régulent la lactation s'organisent en réseau lors d'un premier allaitement. Ce réseau est alors conservé, comme « mis en mémoire » pour être encore plus opérationnel lors de l'allaitement d'une seconde portée. C'est la première fois qu'une forme de mémoire dans le système endocrinien est mise en évidence.
Ces travaux font l'objet d'un article publié dans la revue Nature communications datée du 3 janvier 2012.
La plasticité des systèmes biologiques permet à des organismes de modifier dynamiquement leur physiologie de façon à s'adapter aux conditions environnementales existantes. Au niveau cellulaire, ce processus est associé habituellement au système immunitaire ; au niveau tissulaire, il a été caractérisé il y a plusieurs années dans le cerveau et est au cœur d'une intense recherche en neurobiologie.
En dehors de ces deux systèmes permettant de garder en mémoire des informations à long terme, rien n'indiquait que d'autres cellules pouvaient fonctionner de façon similaire.
L'hypophyse est un organe qui constitue un modèle idéal pour vérifier cette hypothèse car elle comprend des populations distinctes de cellules endocrines organisées en réseaux et qui régulent une multitude de fonctions physiologiques par la sécrétion de différentes hormones.
L'équipe de Patrice Mollard à Montpellier a travaillé avec celle de Paul Le Tissier à Londres (NIMR-MRC2) afin de déterminer si les réseaux de cellules endocrines possèdent des capacités de mémorisation. Ils ont pris comme modèle les cellules qui sécrètent la prolactine (l'hormone de la lactation). La sécrétion de prolactine commande un éventail de réponses cruciales pour permettre de nourrir des souriceaux, comprenant la production de lait.
DOCUMENT CNRS LIEN |
|
|
|
|
 |
|
HORLOGE BIOLOGIQUE ET DIABETE |
|
|
|
|
|
Paris, 29 janvier 2012
Le gardien de l'horloge biologique en cause dans le diabète
Depuis quelques années, on sait que les troubles du sommeil augmentent le risque de devenir diabétique. Une équipe franco-britannique coordonnée par Philippe Froguel du laboratoire Génomique et maladies métaboliques (CNRS /Université Lille 2/Institut Pasteur de Lille, Fédération de recherche EGID) (1), en collaboration avec l'équipe de Ralf Jockers (Institut Cochin, CNRS/Inserm/Université Paris Descartes, Paris), vient d'établir la responsabilité d'un gène clé de la synchronisation du rythme biologique dans le diabète de type 2. Les chercheurs lillois ont montré que des mutations du gène du récepteur de la mélatonine, l'hormone de la nuit qui induit le sommeil, augmentent près de 7 fois le risque de développer un diabète. Publiés le 29 janvier 2012 dans Nature Genetics, ces travaux pourraient déboucher sur de nouveaux médicaments pour soigner ou prévenir cette maladie métabolique.
Le diabète le plus fréquent est celui de type 2. Caractérisé par un excès de glucose dans le sang et une résistance croissante à l'insuline, il touche 300 millions de personnes dans le monde, dont 3 millions en France. Ce chiffre devrait doubler dans les prochaines années du fait de l'épidémie d'obésité et la disparition des modes de vie ancestraux. Lié à une alimentation riche en graisses et glucides, ainsi qu'au manque d'activité physique, on sait aussi que certains facteurs génétiques peuvent favoriser son apparition. Par ailleurs, plusieurs études ont montré que des troubles de la durée et la qualité du sommeil sont aussi des facteurs à risque importants. Par exemple, les travailleurs faisant les « trois huit » ont plus de risques de développer la maladie. Jusqu'à présent, aucun mécanisme reliant le rythme biologique et le diabète n'avait été décrit.
Les chercheurs se sont intéressés au récepteur d'une hormone appelée mélatonine, produite par la glande épiphyse (2) lorsque l'intensité lumineuse décroit. Cette hormone, aussi connue sous le nom d'hormone de la nuit, est en quelque sorte le « gardien » de l'horloge biologique : c'est elle qui la synchronise avec la tombée de la nuit. Les chercheurs ont séquencé le gène MT2 qui code pour son récepteur chez 7600 diabétiques et sujets présentant une glycémie normale. Ils ont trouvé 40 mutations rares qui modifient la structure protéique du récepteur de la mélatonine. Parmi ces mutations, 14 rendaient non fonctionnel ce récepteur. Les chercheurs ont alors montré que chez les porteurs de ces mutations, qui les rendent insensibles à cette hormone, le risque de développer le diabète est près de sept fois plus élevé.
On sait que la production d'insuline, l'hormone qui contrôle le taux de glucose dans le sang, décroit durant la nuit afin d'éviter que l'individu ne souffre d'une hypoglycémie. En revanche, durant le jour, la production d'insuline reprend car c'est le moment où l'individu s'alimente et doit éviter l'excès de glucose dans le sang. Le métabolisme et le rythme biologique sont intrinsèquement liés. Mais ces résultats sont les premiers à démontrer l'implication directe d'un mécanisme de contrôle des rythmes biologiques dans le diabète de type 2.
Ces travaux pourraient déboucher sur de nouveaux traitements du diabète à visées préventive ou curatrice. En effet, en jouant sur l'activité du récepteur MT2, les chercheurs pourraient contrôler les voies métaboliques qui lui sont associées . Par ailleurs, ces travaux démontrent l'importance du séquençage du génome des patients diabétiques afin de personnaliser leur traitement. En effet, les causes génétiques du diabète sont nombreuses et l'approche thérapeutique devrait être adaptée aux voies métaboliques touchées par une dysfonction chez chaque patient.
DOCUMENT CNRS LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 ] Précédente - Suivante |
|
|
|
|
|
|