|
|
|
|
 |
|
MICROELECTRONIQUE |
|
|
|
|
|
Paris, 12 janvier 2011
Microélectronique : un gaz d'électrons à la surface d'un isolant ouvre la voie du transistor multi-fonctions
Des chercheurs du CNRS et de l'Université Paris-Sud 11 (1) ont découvert comment créer une couche conductrice à la surface d'un matériau isolant et transparent très étudié pour la microélectronique du futur, le titanate de strontium (SrTiO3). Cette couche conductrice de deux nanomètres d'épaisseur est un gaz d'électrons métallique bidimensionnel qui fait partie du matériau. Facilement réalisable, elle ouvre des perspectives pour l'électronique à base d'oxydes de métaux de transition (la famille de SrTiO3), qui cherche à profiter de l'énorme variété des propriétés physiques de ces matériaux (supraconductivité, magnétisme, thermoélectricité, etc.) pour intégrer plusieurs fonctionnalités différentes dans un même dispositif microélectronique. Cette découverte inattendue, mise en évidence au synchrotron SOLEIL, est publiée dans la revue Nature du 13 janvier 2011.
Aujourd'hui, les composants microélectroniques sont fabriqués à base de couches de semi-conducteurs déposées sur un substrat de silicium. Afin de poursuivre l'accroissement périodique des performances des composés microélectroniques au-delà de 2020, des solutions technologiques alternatives sont à l'étude. Les chercheurs travaillent de plus en plus sur les oxydes de métaux de transition (2), qui présentent des propriétés physiques intéressantes comme la supraconductivité (3), la magnétorésistance (4), la thermoélectricité (5), la multi-ferroïcité (6), ou encore la capacité photo catalytique (7).
Parmi les oxydes des métaux de transition, le titanate de strontium (SrTiO3) est très étudié. C'est un isolant, mais il devient bon conducteur en le dopant (en créant quelques lacunes d'oxygène par exemple). Les interfaces entre le SrTiO3 et d'autres oxydes (LaTiO3 ou LaAlO3) sont conductrices, même si les deux matériaux sont isolants. En plus, elles présentent de la supraconductivité, de la magnétorésistance, ou de la thermoélectricité avec de très bons rendements à température ambiante. Seulement voilà : les interfaces entre oxydes sont très difficiles à réaliser.
Une découverte inattendue vient de faire sauter ce verrou technologique. Une équipe internationale pilotée par des scientifiques du CNRS et de l'Université Paris-Sud 11 vient de réaliser un gaz d'électrons métallique bidimensionnel à la surface de SrTiO3. Il s'agit d'une couche conductrice de deux nanomètres d'épaisseur environ, obtenue en cassant un morceau de titanate de strontium sous vide. Ce procédé, très simple, est peu coûteux. Les éléments qui constituent SrTiO3 sont disponibles en grande quantité dans les ressources naturelles et c'est un matériau non toxique, contrairement aux matériaux les plus utilisés aujourd'hui en microélectronique (les tellurures de bismuth). En outre, des gaz d'électrons métalliques bidimensionnels pourraient probablement être créés de façon similaire à la surface d'autres oxydes de métaux de transition.
La découverte d'une telle couche conductrice (sans avoir à rajouter une couche d'un autre matériau) est un grand pas en avant pour la microélectronique à base d'oxydes. Elle pourrait permettre de combiner les propriétés intrinsèques multifonctionnelles des oxydes de métaux de transition avec celles du métal bidimensionnel à sa surface. On peut songer, par exemple, au couplage d'un oxyde ferro-électrique avec le gaz d'électrons à sa surface, pour faire des mémoires non volatiles, ou à la fabrication de circuits transparents sur la surface des cellules solaires ou des écrans tactiles.
Les expériences de photoémission résolue en angle (ARPES) qui ont servi à mettre en évidence le gaz d'électron métallique bidimensionnel ont été réalisées d'une part au synchrotron SOLEIL (Saint-Aubin, France), et au Synchrotron Radiation Center (Université du Wisconsin, USA).
DOCUMENT CNRS LIEN |
|
|
|
|
 |
|
CHAMP MAGNETIQUE TERRESTRE |
|
|
|
|
|
Paris, 23 novembre 2012
Un événement de l'histoire du champ magnétique terrestre révélé par l'action du rayonnement cosmique
Il y a 41 000 ans, le champ magnétique de la Terre s'est estompé jusqu'à pratiquement disparaître, laissant notre planète sans protection face au bombardement de particules cosmiques. Des traces de cet événement ont été retrouvées dans des carottes de sédiments océaniques par une équipe du Centre de recherche et d'enseignement de géosciences de l'environnement (CEREGE, CNRS/Aix-Marseille Université/IRD/Collège de France). Dans ces carottes, les chercheurs ont mesuré des variations dans la concentration de Béryllium 10, un isotope radioactif produit par l'action des particules cosmiques sur les atomes d'oxygène ou d'azote de l'atmosphère. Ces travaux, publiés dans le Journal of Geophysical Research, sont un pas important vers la mise au point d'une nouvelle méthode pour étudier l'histoire du champ magnétique terrestre, qui permettra de mieux comprendre sa baisse d'intensité en cours depuis trois millénaires.
Le champ magnétique terrestre forme un efficace bouclier déviant les particules chargées d'origine cosmique qui se dirigent vers nous. Loin d'être constant, celui-ci a connu de nombreuses inversions, le Nord magnétique se retrouvant au pôle Sud géographique. Ces inversions sont toujours accompagnées d'une annulation du champ magnétique. La dernière est survenue il y a 780 000 ans. Le champ magnétique peut aussi connaître des excursions, des périodes où il s'effondre comme s'il allait s'inverser, avant de retrouver sa polarité normale. Le dernier de ces événements, appelé excursion de Laschamp, date d'il y a 41 000 ans.
Ce sont des traces de cet événement que les chercheurs ont retrouvé dans des carottes de sédiments récoltées au large du Portugal et de la Papouasie-Nouvelle Guinée. Dans ces échantillons, ils ont retrouvé des excès de Béryllium 10, un élément produit exclusivement lors de la collision entre particules d'origine cosmique et atomes d'azote ou d'oxygène. Le Beryllium 10 (10Be) produit dans l'atmosphère retombe ensuite à la surface de la Terre où il s'incorpore aux glaces et aux sédiments. Dans les couches correspondant à l'excursion de Laschamp, les chercheurs ont retrouvé jusqu'à deux fois plus de 10Be que le taux normal, témoignant de l'intense bombardement de particules cosmiques qu'a subi la Terre durant plusieurs millénaires.
Classiquement, l'étude de l'histoire du champ magnétique se fait grâce à la présence dans les laves volcaniques, les sédiments ou les poteries antiques de certains oxydes de fer, notamment la magnétite, qui indiquent la direction et l'intensité du champ magnétique existant au moment où ces matériaux se sont figés. Parfois, cette approche, dite paléomagnétique, n'est pas suffisante pour quantifier précisément les variations globales du champ. Les chercheurs ont couplé cette méthode avec la mesure de la concentration de Béryllium 10 sur les mêmes archives sédimentaires. Ils ont ainsi montré que les pics de concentration de cet isotope sont synchrones et présentent la même dynamique et la même amplitude dans les sédiments du Pacifique et de l'Atlantique que dans les glaces carottées au Groenland précédemment analysées. La méthode basée sur le Béryllium 10, affinée depuis 10 ans au CEREGE, permet donc de reconstituer de façon continue les variations d'intensité du champ magnétique terrestre dans sa globalité.
Par ailleurs, on sait que depuis 3000 ans le champ magnétique a perdu 30% de sa force. Cette évolution laisse penser que la Terre pourrait connaître dans les siècles à venir, une excursion semblable à celle survenue il y a 41 000 ans. Les rayons cosmiques de haute énergie pouvant provoquer des mutations et lésions cellulaires, cet événement ne serait pas sans conséquences sur la biodiversité, et notamment sur l'espèce humaine. Voilà pourquoi les chercheurs veulent connaître précisément les rythmes des séquences d'inversions et excursions du champ magnétique afin de retrouver d'éventuelles régularités dans son comportement, et mieux comprendre ainsi l'origine de ces phénomènes dont le siège est le noyau terrestre. C'est le but du projet Magorb lancé en 2009, avec le financement de l'ANR, et porté par le CEREGE, l'Institut de physique du globe de Paris (IPGP) et le Laboratoire des sciences du climat et de l'environnement (LSCE, CNRS/CEA/UVSQ).
DOCUMENT CNRS LIEN |
|
|
|
|
 |
|
PHOTOGRAPHIER LES ELECTRONS |
|
|
|
|
|
Paris, 1 juillet 2008
Un laser pour "photographier" les électrons des atomes
Une expérience menée au CEA-Iramis(1) par une équipe internationale composée notamment de chercheurs du CEA, du CNRS, de l'Université Paris 6 et de l'Imperial College de Londres, ouvre la voie pour "photographier" l'évolution des nuages électroniques, et ce, aussi bien dans un solide que lors d'une réaction chimique ou en électronique moléculaire. Ces travaux sont publiés dans le numéro de juillet 2008 de Nature Physics.
Le laser est un outil de choix pour filmer la trajectoire des électrons dans les atomes et les molécules (plus précisément les "orbitales atomiques ou moléculaires"). Il permet en effet de produire des flashs de lumière d'une extraordinaire brièveté qui, seuls, permettent de suivre le mouvement des électrons qui s'effectuent en quelques centaines d'attosecondes(2).
En 2003, une équipe du CEA-Iramis (Saclay) avait déjà montré la possibilité de produire des impulsions lumineuses de 130 attosecondes en faisant interagir un faisceau laser excitateur avec un jet d'atomes. Cependant, aucun mécanisme ne permettait de contrôler précisément le déclenchement, la durée et l'intensité des impulsions produites.
Dans le cadre d’une collaboration européenne impliquant notamment le CEA, le CNRS, l’Université Paris 6 et l’Imperial College de Londres, des chercheurs viennent de montrer que l'on peut façonner et contrôler ces impulsions ultra-courtes en remplaçant le jet d'atomes par un jet de molécules linéaires, comme par exemple le gaz carbonique. L'idée a été d'utiliser un premier faisceau laser pour aligner les molécules de gaz, de façon à contrôler leur orientation par rapport au champ électrique d’un second faisceau excitateur. Ce dispositif permet de produire des impulsions lasers façonnables à volonté et positionnées dans le temps avec une précision extrême.
Ce "flash ajustable" à l'échelle de l'attoseconde, instrument indispensable à la réalisation de "photographies" d’orbitales électroniques et de leurs réarrangements, devrait constituer un outil supplémentaire pour de nombreux laboratoires à travers le monde dans les domaines de la chimie, des nanosciences et de la nanoélectronique.
DOCUMENT CNRS LIEN |
|
|
|
|
 |
|
ROBOTIQUE |
|
|
|
|
|
Paris, 12 Juillet 2011
Il apprend en temps réel
Un robot humanoïde français obtient la 4ème place dans le défi « Open Challenge » de la compétition internationale "Robocup@home" à Istanbul.
Grâce aux performances de son robot humanoïde, Nao(1), une équipe française de chercheurs a obtenu la 4ème place sur 19 équipes internationales dans le défi « Open Challenge » de Robocup@home. Ce challenge est l'un des nombreux défis de la compétition internationale de robotique « Robocup » qui avait lieu du 5 au 11 juillet 2011 à Istanbul. Le secret de ce succès est le système cognitif du robot développé par l'équipe Inserm dirigée par Peter Ford Dominey, chercheur au CNRS dans l'Unité Inserm 846 « Institut Cellule souche et cerveau ».
L'objectif de la compétition de robotique « Robocup » est de créer une équipe de football robotisée capable de battre une équipe de football humaine d'ici 2050. En plus de la RoboCupSoccer, d'autres compétitions étaient organisées cette année à Istanbul : la RoboCupRescue, la RoboCupJunior et la RoboCup@Home(2). Cette dernière est consacrée aux robots domestiques capables d'effectuer des tâches ménagères. Une aubaine pour l'équipe de recherche de l'Inserm-CNRS qui a pu participer à la compétition et tester ses derniers développements dans le cerveau de leur robot humanoïde.
Nettoyer une chambre à coucher, faire la vaisselle, le ménage…Tout ceci sera peut-être bientôt à portée de main des robots ...Il suffira juste de leur apprendre. Le système cognitif développé par l'équipe Inserm de Peter Ford Dominey, chercheur au CNRS, permet ainsi à leur robot de comprendre un être humain par une simple discussion et d'apprendre de nouvelles tâches. Grâce à son échange avec l'homme, le robot apprend comment effectuer différentes actions utilisant la vision, la langue et la démonstration physique.
DOCUMENT CNRS LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 ] Précédente - Suivante |
|
|
|
|
|
|