ecole de musique piano
     
menu
 
 
 
 
 
 

LE PENDULE DE FOUCAULT

 

LE  PENDULE  DE  FOUCAULT

VIDEO          YOUTUBE                    LIEN

VIDEO          DAILYMOTION          LIEN

 

 
 
 
 

MICROELECTRONIQUE

 

Paris, 12 janvier 2011

Microélectronique : un gaz d'électrons à la surface d'un isolant ouvre la voie du transistor multi-fonctions
Des chercheurs du CNRS et de l'Université Paris-Sud 11 (1) ont découvert comment créer une couche conductrice à la surface d'un matériau isolant et transparent très étudié pour la microélectronique du futur, le titanate de strontium (SrTiO3). Cette couche conductrice de deux nanomètres d'épaisseur est un gaz d'électrons métallique bidimensionnel qui fait partie du matériau. Facilement réalisable, elle ouvre des perspectives pour l'électronique à base d'oxydes de métaux de transition (la famille de SrTiO3), qui cherche à profiter de l'énorme variété des propriétés physiques de ces matériaux (supraconductivité, magnétisme, thermoélectricité, etc.) pour intégrer plusieurs fonctionnalités différentes dans un même dispositif microélectronique. Cette découverte inattendue, mise en évidence au synchrotron SOLEIL, est publiée dans la revue Nature du 13 janvier 2011.
Aujourd'hui, les composants microélectroniques sont fabriqués à base de couches de semi-conducteurs déposées sur un substrat de silicium. Afin de poursuivre l'accroissement périodique des performances des composés microélectroniques au-delà de 2020, des solutions technologiques alternatives sont à l'étude. Les chercheurs travaillent de plus en plus sur les oxydes de métaux de transition (2), qui présentent des propriétés physiques intéressantes comme la supraconductivité (3), la magnétorésistance (4), la thermoélectricité (5), la multi-ferroïcité (6), ou encore la capacité photo catalytique (7).

Parmi les oxydes des métaux de transition, le titanate de strontium (SrTiO3) est très étudié. C'est un isolant, mais il devient bon conducteur en le dopant (en créant quelques lacunes d'oxygène par exemple). Les interfaces entre le SrTiO3 et d'autres oxydes (LaTiO3 ou LaAlO3) sont conductrices, même si les deux matériaux sont isolants. En plus, elles présentent de la supraconductivité, de la magnétorésistance, ou de la thermoélectricité avec de très bons rendements à température ambiante. Seulement voilà : les interfaces entre oxydes sont très difficiles à réaliser.

Une découverte inattendue vient de faire sauter ce verrou technologique. Une équipe internationale pilotée par des scientifiques du CNRS et de l'Université Paris-Sud 11 vient de réaliser un gaz d'électrons métallique bidimensionnel à la surface de SrTiO3. Il s'agit d'une couche conductrice de deux nanomètres d'épaisseur environ, obtenue en cassant un morceau de titanate de strontium sous vide. Ce procédé, très simple, est peu coûteux. Les éléments qui constituent SrTiO3 sont disponibles en grande quantité dans les ressources naturelles et c'est un matériau non toxique, contrairement aux matériaux les plus utilisés aujourd'hui en microélectronique (les tellurures de bismuth). En outre, des gaz d'électrons métalliques bidimensionnels pourraient probablement être créés de façon similaire à la surface d'autres oxydes de métaux de transition.

La découverte d'une telle couche conductrice (sans avoir à rajouter une couche d'un autre matériau) est un grand pas en avant pour la microélectronique à base d'oxydes. Elle pourrait permettre de combiner les propriétés intrinsèques multifonctionnelles des oxydes de métaux de transition avec celles du métal bidimensionnel à sa surface. On peut songer, par exemple, au couplage d'un oxyde ferro-électrique avec le gaz d'électrons à sa surface, pour faire des mémoires non volatiles, ou à la fabrication de circuits transparents sur la surface des cellules solaires ou des écrans tactiles.

Les expériences de photoémission résolue en angle (ARPES) qui ont servi à mettre en évidence le gaz d'électron métallique bidimensionnel ont été réalisées d'une part au synchrotron SOLEIL (Saint-Aubin, France), et au Synchrotron Radiation Center (Université du Wisconsin, USA).

DOCUMENT                CNRS                  LIEN

 
 
 
 

SPIN ET GRAPHENE

 

Paris, 05/06/2012

L'information de spin semble trouver enfin son support pour l'électronique de demain : le graphène
Avec des centaines de millions de disques durs vendus chaque année et la prolifération des data-centers de géants de l'internet, le magnétisme reste aujourd'hui, de loin, la principale source de stockage de l'information à l'échelle mondiale. C'est en fait le « spin », le nano-aimant élémentaire du magnétisme, qui porte cette information. Bien au delà du stockage, il est pressenti comme l'un des vecteurs possibles de l'information pour l'électronique à faible consommation de demain. Cependant malgré plusieurs décennies de recherche intense, cet avènement se heurte au paradoxe de l'information de spin : alors même qu'elle est la plus prisée dans le stockage pour son caractère non-volatile, elle s'est révélée être des plus volatiles lorsqu'on cherche à la transporter. Des chercheurs de l'Université Paris-Sud, du CNRS et de Thales, en collaboration avec des collègues américains du GeorgiaTech, montrent que le graphène pourrait être le media idéal permettant d'envisager à terme la réalisation d'architectures complexes et de logiques s'appuyant sur le traitement d'informations à base de spin. Ces travaux viennent d'être publiés sur le site de la revue Nature physics.
Le traitement de l'information de spin est un paradigme possible pour l'électronique post-CMOS (complementary metal-oxide semiconductor)(1) et le transport efficace du spin sur de longues distances est un élément fondamental de cette vision. Cependant, malgré plusieurs décennies de recherche intense, une plateforme appropriée restait encore à trouver.

Des scientifiques de l'unité mixte de physique CNRS/Thales associée à l'Université Paris-Sud, de l'Institut Néel (CNRS), du laboratoire Thales Research and Technology et du Georgia Institute of Technology (USA) ont étudié le transport de spin dans des structures à deux terminaux de type polariseur / analyseur basés sur du graphène à haute mobilité obtenu par croissance épitaxiale sur du carbure de silicium. Ils ont démontré que le transport de spin dans le graphène est efficace jusqu'à 75% avec des signaux de spin de l'ordre du mega-ohm et des longueurs de diffusion de spin de plus 100 micromètres.

Ces résultats, fruits d'une collaboration entre spécialistes de l'électronique de spin et du graphène, permettent enfin de lever un verrou et d'entrevoir une plateforme potentielle pour le traitement de l'information de spin : le graphène, cette couche de carbone monoatomique avec une structure de nid d'abeille. La spintronique(2) associée au graphène pourrait être pressentie comme l'un des vecteurs possibles de l'information pour l'électronique à faible consommation de demain.

DOCUMENT          CNRS                  LIEN

 
 
 
 

NANOELECTRONIQUE

 

Paris, 13 mars 2008

Nanoélectronique : les chercheurs observent en direct la compression de la lumière
Une équipe de chercheurs du CEA(1) et de l'Université de Technologie de Troyes associée au CNRS(2) a visualisé, au microscope, des plasmons à la surface de conducteurs mesurant 30 nanomètres. L'utilisation de ces plasmons, signaux à la limite de l'électronique et de l'optique, devient, à cette échelle, un enjeu important pour la miniaturisation recherchée des circuits électroniques.
C'est la première fois que des images d'une telle résolution sont obtenues pour ces phénomènes étudiés depuis une dizaine d'années. Cette observation fait l'objet d'une publication dans Nano Letters du 12 mars 2008.
En électronique, les efforts technologiques se poursuivent pour réaliser des circuits de plus en plus fins et permettant de traiter l'information à des fréquences de plus en plus élevées. Si les dispositifs électroniques deviennent plus petits et plus complexes (les micro-processeurs des ordinateurs), ils restent limités à des fréquences usuelles de l'ordre du gigahertz. Les fréquences optiques sont un million de fois plus élevées (1015 Hz), mais les limites spatiales imposées par la longueur d'onde de la lumière (de l'ordre du micron) empêchent une miniaturisation plus poussée.

Pour réduire encore la longueur d’onde, et en quelque sorte comprimer la lumière, une solution consiste à convertir le signal lumineux en « plasmon ». Le plasmon est un phénomène ayant tous les caractères d’une onde lumineuse, sauf qu’il reste bloqué aux parois d’un métal conducteur. Lorsque le diamètre de l’objet métallique est réduit à 30 nm, le plasmon développe un mode dit « lent » (on parle de plasmon lent). Or ce mode lent a la propriété d’osciller à la fréquence de l’onde lumineuse tout en ayant une longueur d’onde très inférieure à celle de  la lumière !

Les chercheurs s’y intéressent car c’est à cette même échelle approchant les 30 nm que se poseront bientôt les limites de miniaturisation en électronique.

Ces principes étaient connus, mais il restait à les observer concrètement. Lorsque le plasmon excité par la lumière se propage sur le conducteur, différents effets secondaires apparaissent, parmi lesquels l’émission d’électrons. Les chercheurs ont donc utilisé un microscope PEEM (Photo Emission Electron Microscopy) pour obtenir ces images.

La première figure montre l'émission issue d'un fil d'or. Les modulations d'intensité résultent des interférences entre le plasmon lent et l'onde lumineuse d'excitation.

L’image à très haute résolution (fig.2) montre un mode lent d'excitation plasmon d'un « bâtonnet » de 100 nm de long par de la lumière de longueur d'onde 807 nm. Ici on peut comprimer par 3 la longueur d’onde par rapport à la longueur d’onde de la lumière (entre 250 et 300 nm).

En convertissant l'information d'un signal optique vers un plasmon lent, on peut ainsi envisager, pour des structures voisines de 30 nm, de concilier les hautes fréquences optiques et les dimensions « classiques » de l’électronique silicium.

DOCUMENT        CNRS          LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solf�ège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales / Confidentialite

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon