ecole de musique piano
     
menu
 
 
 
 
 
 

OBSERVATION ET COSMOLOGIE

 

OBSERVATION ET COSMOLOGIE


La cosmologie occupe dans les sciences observationnelles une place particulière. Elle se trouve en effet à la frontière entre physique fondamentale et astrophysique aussi bien par les questions auxquelles elle essaie de répondre que par son mode de relation entre théorie et observations. Les grandes questions sur la géométrie de l'univers, son histoire, son contenu ou sa dynamique ont été posées dés le début du vingtième siècle juste après la mise au point de la relativité générale comme théorie de la gravitation. L'histoire de la cosmologie est pavée depuis près d'un siècle par des prédictions très précises et souvent basées sur des considérations de physique fondamentale ou la philosophie n'était pas absente (si on pense en particulier à l'origine de l'inertie et au principe de Mach). Certaines de ses prédictions allaient même à l'encontre des premières observations comme le “principe cosmologique ” supposant que l'univers est homogène a grande échelle. Il est frappant que beaucoup de ces prédictions, qui étaient pour certaines très difficile à tester, soient en passe d'être vérifiées. L'astrophysique, comme les sciences de la Terre, se heurte à une difficulté essentielle : la physico-chimie des objets étudiés est en général complexe et les prédictions liées à un modèle particulier ne peuvent être testées qu'avec une précision médiocre liée aux limitations évidentes de ces modèles eux même. Par contre en cosmologie, certaines prédictions peuvent être mesurées avec une précision qui les rapproche plus des expériences de physique fondamentale. L'exemple le plus spectaculaire est certainement le caractère “ Planckien ” du rayonnement cosmologique découvert par Penzias et Wilson et vérifié par le satellite COBE. L'histoire de cette prédiction née dans les années 40 de déductions hardies basées sur la physique nucléaire et finalement vérifiée dans les années 90 est un des meilleurs exemples. Il n'est pas le seul ; l'histoire de la constante cosmologique, celle de la matière noire ou surtout de la géométrie de l'Univers sont tout aussi passionnantes. Le caractère Euclidien ou non de la géométrie de notre univers est une de ces questions qu'il est difficile d'attacher à une seule discipline. Elle vient dans les dernières années d'entrer de plein pied dans la science expérimentale. Les moyens observationnels spatiaux liés à des progrès technologiques très pointus sur les détecteurs ont permis une part importante de ces vérifications spectaculaires. On retracera leur histoire durant le vingtième siècle.

 

VIDEO          CANAL  U             LIEN

 

(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
 

LES MATÉRIAUX MOLÉCULAIRES

 

Texte de la 240e conférence de l’Université de tous les savoirs donnée le 27 août 2000.Les matériaux moléculaires ou : de la molécule au matériau …par Michel Verdaguer Il est trivial de dire que la notion de matériau a scandé l’histoire de l’humanité : les « âges » qui structurent l’histoire de l’homme portent le nom de matériaux : âge de la pierre, âge du bronze, âge du fer, âge du silicium ou du nylon. Un seul de ces matériaux est un matériau (macro)moléculaire, c’est le nylon, mais c’est le plus récent, le plus complexe, le plus seyant[1]. Qu'est-ce qu'un matériau moléculaire ? Avant toute chose, il est souhaitable de définir ce que l’on entend par matériau moléculaire. Un matériau moléculaire est un matériau constitué de molécules[2]. Une molécule est un ensemble d’atomes reliés entre eux par des liaisons chimiques covalentes. Un matériau est une substance utile qui, convenablement mise en forme, est insérée dans un dispositif pour y remplir une fonction grâce à ses propriétés. C'est souvent un solide. Les matériaux moléculaires sont d'une grande diversité, de la nappe de l’incroyable pique-nique du 14 juillet 2000 (composite de polymères) aux dispositifs d’affichage des écrans de micro-ordinateurs (cristaux liquides). Les matériaux moléculaires parmi les autres matériaux Les grandes classes de matériaux utilisés par l'homme sont les métaux, les céramiques, les polymères[3]. Cette classification, pour une part arbitraire, ne comporte pas de matériau moléculaire au sens strict. Mais les polymères sont des molécules géantes (macromolécules). Chaque type de matériau a des propriétés caractéristiques (mécaniques, physiques, chimiques), correspondant à la structure et au type de liaison concerné : les métaux (liaison métallique) sont des assemblages d'atomes. Ils sont conducteurs, durs, à température de fusion élevée, malléables, ductiles, denses, réfléchissants et opaques. Les céramiques (liaison ionique) sont des assemblages d'ions isolants, réfractaires, denses, résistants mécaniquement et thermiquement mais cassants et fragiles. Les polymères (liaison covalente) sont légers, faciles à mettre en forme, isolants, peu rigides, souvent peu stables à la température. Quand un besoin n'est pas couvert par les grandes classes de matériaux, on fait appel à des composites, mélange complexe de matériaux ou on en crée de nouveaux. Il existe une véritable science des matériaux qui les étudie, les améliore et les crée[4]. Parmi les matériaux nouveaux, figurent précisément les matériaux moléculaires. Contrairement aux céramiques et aux métaux, obtenus à très haute température (donc coûteux en énergie), les matériaux moléculaires et les polymères sont obtenus dans des conditions douces de température et de pression. Ils sont légers, transparents, souvent délicatement colorés, faciles à mettre en forme ; ils sont souvent biocompatibles, biodégradables, recyclables. Dans le cycle des matériaux (Fig. 1), où le souci de l'environnement grandit, ces dernières propriétés sont importantes. Les matériaux moléculaires sont cependant fragiles et peuvent vieillir rapidement (sensibles à l'air, à la lumière …). Les matériaux moléculaires dans l’histoire Un matériau répond le plus souvent à un besoin, individuel ou social. Dans l'histoire, l'apparition de nouveaux matériaux correspond à l'évolution des besoins et à la capacité de l'homme à maîtriser le processus de fabrication du matériau[5] (Fig. 2). La protection contre les éléments est à l'origine de l'utilisation des matériaux moléculaires que sont les fibres naturelles végétales (lin, chanvre, coton à base de cellulose), ou animales (laine, soie à base de polypeptides), les fibres modifiant la matière première naturelle (soie artificielle, nitrate et acétate de cellulose …) ou plus tard les fibres purement synthétiques (nylons)[6]. L'évolution du naturel au synthétique est une constante dans l'histoire des matériaux moléculaires : la nature et les systèmes biologiques sont une source permanente d'exemples, d'inspiration et d'espoir. L'époque contemporaine marque l'accélération vers l'utilisation de matériaux complexes, notamment moléculaires. Le coût des matériaux moléculaires La figure 3 indique le coût des matériaux dans diverses branches industrielles, exprimé en euros par kilogramme. Les matériaux moléculaires interviennent peu dans les industries de la construction. Mais dès que le poids devient un critère de choix (emballage, transport), quand les autres exigences deviennent complexes (équipement sportif, santé …), ils prennent une place importante. Les multiples travaux fondamentaux et appliqués pour leur production industrielle contribuent à l'élévation du coût par unité. Par exemple, les lentilles de contact sont de petits chefs-d'œuvre de transparence, de légèreté, de précision optique et mécanique … Comment créer un matériau moléculaire ? L'élaboration d'un matériau est un long processus qui va de la matière première au produit[7]. Nous n'abordons ici que deux aspects fondamentaux : a) la liaison covalente sur laquelle repose l'existence de molécules stables (dihydrogène, H2 ou fluorure d'hydrogène, HF) et b) les interactions intermoléculaires sur lesquelles repose la construction des solides moléculaires. Nous n'abordons pas les problèmes très importants de mise en forme qui permettent de passer du système moléculaire doté des propriétés requises au matériau. L'existence d'une molécule repose sur l'interaction des atomes qui la constituent. Par combinaison et recouvrement des orbitales atomiques se forment des orbitales moléculaires qui décrivent les électrons dans la molécule[8]. Dans H2, les deux orbitales atomiques forment deux orbitales moléculaires ; les deux électrons se placent dans l'orbitale moléculaire de plus basse énergie (dite liante). L'orbitale la plus haute reste vide (antiliante). La molécule est plus stable que les atomes séparés. Les électrons de la liaison forment un doublet liant. Ils sont également partagés par les deux atomes. La liaison est dite covalente. Pour la casser, il faut fournir une grande quantité d'énergie (environ 450 kiloJoules par mole – ou kJ mol-1 – ; la mole est l'unité de quantité de matière. Au contraire, la molécule HF est formée par deux atomes différents : le fluor et l'hydrogène dont l'énergie des orbitales est différente. La liaison HF est encore plus forte que celle de H2 : 550 kJ mol-1. Mais le doublet de la liaison n'est plus partagé de manière égale entre H et F, il est « attiré » par l'atome de fluor, plus électronégatif ; il apparaît un moment dipolaire électrique dirigé du fluor vers l'hydrogène ; la liaison devient partiellement ionique. Six autres électrons du fluor forment trois doublets non liants. Le dipôle électrique est à l'origine d'interactions intermoléculaires, d'autant plus fortes que le fluor est très électronégatif et que l'hydrogène, petit, peut s'approcher très près du fluor voisin. Ces liaisons hydrogène existent dans l'eau liquide ou solide (glace) où le moment dipolaire électrique O-H est également important. Ces interactions expliquent la structure de la glace et déterminent les températures de changement d'état : pour l'eau, la température d'ébullition Téb est élevée, 100° Celsius, à cause des liaisons hydrogène. Pour le dihydrogène, apolaire, les interactions sont au contraire très faibles (interactions de van der Waals) et la température d'ébullition est très basse (-253° C !). Lorsque l'on place du chlorure de sodium NaCl (sel de cuisine) dans l'eau, le cristal est dissocié et les ions positifs sodium Na+ (cations) et négatifs chlorure Cl- (anions) se « solvatent » i.e. s'entourent de molécules d'eau grâce à des interactions ion-dipôle : ceci est à la base des propriétés de solvant de l'eau et de ses extraordinaires propriétés de transport de matière en biologie et en géologie : l'eau dissout les matières polaires ou ioniques (par interaction hydrophile) et n'interagit pas avec les molécules (ou les parties de molécules) non polaires (par interaction hydrophobe). C'est de la structure et de la nature de la liaison dans les molécules et des interactions entre les molécules que naissent les propriétés, la fonction et l'intérêt du matériau[9]. Molécules et matériaux moléculaires au quotidien Nous utilisons chaque jour des matériaux moléculaires[10] : fibres textiles (vêtements), savons (lessives), cristaux liquides (affichage : montres, ordinateurs, thermomètres) pour ne prendre que trois exemples. Polyamides, polyesters[11] Les fibres textiles artificielles sont des (macro)molécules, formés par l'addition ou la condensation multiple de petites molécules identiques : il se forme de longues chaînes[12]. Les propriétés du matériau reposent sur la structure des molécules de départ, sur les interactions entre les chaînes, puis sur la mise en forme. Ainsi les polyamides sont des polymères obtenus par la création de groupements amide ou peptidique, R-CO-NH-R', tandis que les polyesters comportent des groupements esters, R-CO-O-R'. La liaison hydrogène dans les polyamides renforce les interactions entre les chaînes, donc les propriétés mécaniques des polymères, qui sont excellentes (Fig. 4). Par contre, elle permet l'interaction avec des molécules d'eau : le nylon, qui est un polyamide, retiendra l'eau davantage que les polyesters (qui pourront donc utilisés comme vernis, au contact de l'eau …). D'autres interactions entre les chaînes - par exemple des interactions de van der Waals entre les noyaux aromatiques dans le Kevlar (Fig. 4), améliorent les propriétés mécaniques : le Kevlar est utilisé dans les tissus de protection anti-balles … Le besoin en matériaux complexes conduit à la préparation de composites. Ainsi, la nappe du pique-nique de la méridienne du 14 juillet 2000 assemble astucieusement de nombreux matériaux moléculaires : fibres de cellulose naturelle, liées par pulvérisation avec une émulsion aqueuse d'éthylène-acétate de vinyle ; le support est imperméable en polyéthylène pour la face arrière, contrecollée avec une émulsion aqueuse de styrène-butadiène. L'impression est sérigraphique avec des encres dont le liant est à base de copolymère butadiène. L'épaississant est acrylique. Les encres contiennent des résines acryliques et des pigments minéraux et organiques exempts de métaux lourds[13]. Le revêtement du train à grande vitesse « Méditerranée », conçu par un grand couturier, est également un composite de matériaux moléculaires, intelligemment choisis et artistiquement disposés[14]. Savons dans les lessives[15] Les savons sont obtenus à partir de corps gras, formés à partir de glycérol et d'acides carboxyliques à longues chaînes aliphatiques -(CH2)n-CH3 (Fig. 5A). La stéarine traitée à chaud par une base donne un savon, l'anion stéarate. L'extrémité carboxylate est chargée et hydrophile, l'extrémité aliphatique est hydrophobe. Il s'agit d'une molécule amphiphile ou surfactant. La graisse n'est pas soluble dans l'eau, une tache de graisse sur un tissu ne se dissout dans l'eau pure. On place alors un savon dans l'eau (Figure 5B, Schéma 1) : l'extrémité hydrophobe interagit avec la graisse hydrophobe (2) ; l'extrémité hydrophile est solvatée par l'eau (3). Quand le nombre d'interactions devient suffisant, la graisse est entraînée en tout ou partie (4). Le nettoyage est évidemment favorisé par une température et une agitation adaptées. Les surfactants donnent une nouvelle illustration du remplacement des produits naturels (savons issus de graisses animales ou végétales) par des dérivés de synthèse : les carboxylates ne sont pas très solubles en présence d'ions sodium ou potassium des eaux de lavage « dures » et sont remplacés par des composés plus solubles comme le benzenesulfonate à chaîne branchée, obtenu à partir d'un sous-produit de l'industrie pétrolière le méthylpropène, de benzène et d'acide sulfurique. C'est l'un des « détergents anioniques » des lessives. Les savons illustrent aussi le souci de l'environnement : les chaînes branchées ne sont pas biodégradables et encombrent les eaux, d'où l'apparition sur le marché d'autres détergents « non ioniques », non branchés, tout aussi solubles grâce à des groupements fonctionnels alcool et éther (Fig. 5C). Cristaux liquides[16] Les cristaux liquides sont des matériaux moléculaires qui représentent un nouvel état de la matière, l'état mésomorphe, dont l'organisation est intermédiaire entre l'ordre tridimensionnel du cristal et le désordre relatif du liquide (Fig. 6A). Ils ne présentent pas de température de changement d'état liquide-solide mais des températures correspondant à des organisations intermoléculaires variées : nématiques, smectiques, … (Fig. 6B). Ces propriétés exceptionnelles reposent sur l'auto-organisation d'assemblées de molécules anisotropes, i.e. qui n'ont pas les mêmes propriétés dans les trois directions de l'espace (molécules allongées). La direction dans laquelle les molécules s'orientent en moyenne est appelée directrice. Les interactions entre les molécules qui conduisent à l'état mésomorphe sont faibles de type Van der Waals[17]. Lorsque l'on applique un champ électrique, les molécules s'orientent de manière à minimiser l'énergie du système. Si on place un cristal liquide entre deux plaques, l'une qui polarise la lumière, l'autre qui l'analyse, on peut disposer les polariseurs de manière à ce qu'aucune lumière ne passe (Fig. 6C). L'application d'un champ électrique oriente différemment les molécules et permet le passage de la lumière : le dispositif passe du noir à l'incolore (ou inversement), c'est le principe de l'affichage sur un écran. Des dispositifs électroniques de plus en plus élaborés (nématique « supertordu » et écrans « à matrice active » (où un transistor est associé à chaque domaine de cristal liquide) sont disponibles pour accélérer la vitesse d'affichage. Certains autres cristaux liquides (cholestériques chiraux) sont organisés de telle manière que la directrice tourne régulièrement autour d'un axe perpendiculaire à celle-ci. La directrice reprend la même orientation avec un pas p, dont dépend la réflexion de la lumière par le composé. Quand la température change, p varie (par contraction ou dilatation thermique) et le cristal liquide change de couleur : les thermomètres fondés sur ce principe sont très répandus. Élaboration de nouveaux matériaux fonctionnels L'un des problèmes importants posés aux laboratoires universitaires et industriels est la mise au point de nouveaux matériaux fonctionnels. Le concept de fonction est ici utilisé par opposition à celui de structure : le béton assure des propriétés structurales, le polymère des lentilles jetables assure de multiples fonctions : correction de la vue, transparence, perméabilité au dioxygène, hydrophilie). Les exemples ci-dessous montrent que la structure moléculaire contrôle les propriétés. Propriétés optiques La couleur des composés moléculaires est déterminée par la manière dont ils interagissent avec la lumière : ils peuvent la transmettre, la diffuser, la réfléchir de manière plus ou moins complexe en fonction de la structure moléculaire et de la microstructure du matériau[18]. Une lumière monochromatique de longueur d'onde l est constituée de photons d'énergie hn (h est la constante de Planck et n la fréquence de la lumière). La lumière visible correspond à des longueurs d'onde l comprises entre 400 et 800 nanomètres (nm). L'absorption de la lumière correspond à l'excitation d'un électron d'une orbitale moléculaire occupée vers une orbitale vacante. Seuls les photons dont l'énergie correspond exactement à la différence d'énergie entre les niveaux occupés et vacants sont absorbés. Par transmission, l'œil voit les longueurs d'onde non absorbées : si un matériau absorbe dans le rouge (600-800nm), il apparaît bleu par transmission. La structure des molécules peut être modifiée pour moduler les énergies des orbitales et donc la couleur. La garance, extraite de la racine de Rubia tinctorum, contient de l'alizarine qui peut être produite industriellement (Fig. 7). C'est la compréhension de la structure moléculaire des colorants (alizarine, indigo) qui a permis à l'industrie chimique allemande, à la fin du 19ème siècle d'asseoir sa suprématie dans ce domaine, en ruinant l'industrie d'extraction des colorants naturels[19]. Au-delà de la couleur, l'interaction de la lumière avec les matériaux a de multiples applications : l'absence d'absorption conduit à des matériaux transparents (polymères des lentilles oculaires[20] …) ; les crèmes de protection solaires ou les lunettes de soleil (verres photochromes[21]) protègent des rayons ultraviolets avec des molécules organiques conçues pour arrêter tout ou partie des rayons (écrans A, B …), comme l'ozone le fait dans la haute atmosphère. D'autres matériaux, asymétriques, traversés par une lumière de fréquence donnée, créent une lumière de fréquence double ou triple (matériaux pour l'optique non linéaire). D'autres systèmes émettent de la lumière par désexcitation d'une molécule excitée : ver luisant, diode luminescente, bâton lumineux chimiluminescent à base de luminol …). Le linge « plus blanc que blanc » existe bel et bien : il n'absorbe pas la lumière, il la diffuse et il en émet grâce à des additifs luminescents peroxygénés déposés sur les tissus par la lessive[22] ! Propriétés électriques La conductivité mesure la capacité d'un corps à conduire le courant. C''est l'une des grandeurs physiques qui varie le plus : plus de 20 ordres de grandeur entre les matériaux les plus isolants et les plus conducteurs. Les supraconducteurs ont même une conductivité qui tend vers l'infini. Les matériaux conducteurs métalliques sont généralement des métaux ou des oxydes. Les matériaux moléculaires sont pour la plupart isolants (s très faible), mais les chimistes ont réussi à transformer certains d'entre eux en conducteurs métalliques. L'idée est simple : en plaçant côte à côte un nombre infini d'atomes, on construit une bande d'énergie de largeur finie, formée d'une infinité de niveaux (ou d'orbitales) (Fig. 8, schémas 1-5). Quand la bande est vide et séparée en énergie des autres bandes (1), il y a ni électron, ni conduction. Quand la bande est pleine, chaque O.M. contient deux électrons qui ne peuvent se déplacer (isolant). Pour qu'il y ait conductivité, certains niveaux de la bande doivent être inoccupés (vacants ou partiellement vacants -3,4). Un semi-conducteur correspond au cas 5. La bande peut être construite par des orbitales atomiques du carbone dans un polymère comme le polyacétylène ou par l'empilement de molécules [tétrathiafulvalène (TTF) ou tétracyanoquinodiméthane (TCNQ)]. Le polyacétylène est isolant. Quand on l'oxyde, on enlève des électrons dans une bande qui devient partiellement occupée et le matériau devient conducteur. Il s'agit d'une discipline très active qui a valu le prix Nobel 2000 à trois chercheurs américains et japonais (A.J. Heeger, A.G. MacDiarmid, H. Shirakawa)[23]. Propriétés magnétiques[24] Ici encore les matériaux magnétiques traditionnels sont des métaux ou des oxydes (aimants domestiques, moteurs …). Les chimistes savent aujourd'hui construire des matériaux magnétiques moléculaires, à partir de complexes d'éléments de transition ou de radicaux organiques stables. À chaque électron est associé un spin S = 1/2 et un moment magnétique élémentaire. Les éléments de transition présentent 5 orbitales d où peuvent se placer 10 électrons. L'environnement chimique du métal constitué de molécules appelées ligands, permet de contrôler l'énergie des orbitales et la manière de les remplir avec des électrons : dans un complexe octaédrique ML6, par exemple, l'élément de transition est entouré de six molécules. La symétrie permet de prévoir que les cinq orbitales d dans le complexe sont séparées en deux familles : trois orbitales appelées t2g, deux orbitales appelées eg, séparées par une énergie ∆oct, variable avec les ligands. La théorie qui décrit le phénomène porte le joli nom de « champ cristallin » ou « champ des ligands ». Les électrons ont alors le choix : occuper le maximum d'orbitales (ce qui, pour les orbitales eg, coûte l'énergie ∆, ou se mettre en paire dans une même orbitale (ce qui coûte une énergie d'appariement P). Prenons l'exemple de 5 électrons (Fig. 9) : a) quand ∆ < P, le champ est faible et le spin est fort (S = somme des cinq spins parallèles = 5/2) ; b) quand ∆ > P, les électrons se regroupent par paires dans les orbitales t2g ; le champ est fort et le spin est faible (S = 1/2). Dans la situation intermédiaire où ∆ est à peu près égal à P, le complexe peut être de spin fort ou faible, en fonction des contraintes appliquées (température kT, pression, lumière). C'est le phénomène de transition de spin qui se manifeste par un changement de propriétés magnétiques et de couleur (car ∆ change lors de la transition). Quand la transition se manifeste à température ambiante et présente le phénomène dit d'hystérésis (la température de transition « spin fort-spin faible » (blanc-rouge, par exemple) est différente de celle de la transition inverse, spin faible-spin fort. Il existe un domaine de température où le système peut être spin fort (blanc, quand il vient des hautes températures), ou spin faible (rouge quand il vient des basses températures). C'est un système bistable, « à mémoire » en quelque sorte, qui « se souvient » de son histoire (thermique), utilisable pour l'affichage[25]. Au-delà de cet exemple, l'application de règles simples permet de construire des matériaux magnétiques. Quand deux électrons occupent deux orbitales sur deux atomes voisins A et B, trois situations existent : a) quand les orbitales se recouvrent, comme dans le cas de la molécule de dihydrogène, on obtient un couplage antiferromagnétique entre les spins (les spins sont d'orientation opposée, antiparallèle, le spin total ST = SA - SB = 0) ; b) quand les orbitales ne se recouvrent pas (elles sont orthogonales), les spins s'orientent parallèlement et le couplage est ferromagnétique S = SA + SB = 1) ; c) une situation amusante naît quand les orbitales se recouvrent et que le nombre d'électrons est différent sur A et B, alors ST = SA - SB ≠ 0, le spin résultant est non nul. Paradoxalement et dialectiquement, l'antiferromagnétisme engendre son contraire, un magnétisme résultant. Cette idée a valu le prix Nobel à Louis Néel. En étendant de proche en proche l'interaction dans les trois directions de l'espace, jusqu'à l'infini, à une certaine température critique, TCurie, un ordre magnétique à longue distance apparaît où tous les grands spins sont alignés dans un sens et tous les petits spins sont alignés en sens inverse. C'est ainsi qu'en utilisant la stratégie des orbitales orthogonales [ i.e. avec du chromicyanure de potassium (3 orbitales t2g) combiné avec du nickel(II) (2 orbitales eg)], Véronique Gadet, à obtenu un aimant ferromagnétique avec une température de Curie, 90 Kelvins (K), supérieure à la température de liquéfaction de l'azote liquide, 77K[26]. En utilisant la stratégie du ferrimagnétisme, Sylvie Ferlay a obtenu un aimant qui s'ordonne un peu au-dessus de la température ambiante (42°C ou 315K)[27]. Deux points méritent d'être soulignés dans ce résultat : le caractère rationnel de l'approche et la possibilité qu'il offre désormais de passer aux applications pratiques des aimants à précurseurs moléculaires. Un exemple est donné sur la figure 10. L'aimant à précurseur moléculaire est dans une ampoule dans un gaz inerte (argon) car exposé à l'air, il perd ses propriétés. Il est suspendu à un point fixe, comme un pendule. Quand il est froid, il est attiré par un aimant permanent (1). En ce point, il est chauffé par un faisceau lumineux (lampe, soleil). Quand sa température dépasse la température d'ordre, il n'est plus attiré par l'aimant et repart vers la verticale (2). Hors du faisceau, l'air ambiant le refroidit (3) et il est à nouveau attiré : d'où un mouvement oscillant où l'énergie lumineuse se transforme en énergie mécanique, en utilisant deux sources gratuites d'énergie : l'énergie solaire et l'air ambiant. Des millions de cycles ont ainsi été effectués sans fatigue du système. La recherche de nouveaux matériaux magnétiques moléculaires est très active, au niveau national et international. Certains matériaux sont capables de présenter plusieurs fonctions (magnétisme modulé par la lumière pour l'enregistrement photomagnétique)[28], aimants optiquement actifs (qui font tourner à volonté la lumière polarisée soit à droite soit à gauche)[29] … Matériaux pour l’électronique moléculaire[30] L'un des développements le plus excitant est celui des matériaux pour l’électronique moléculaire. Sous ce terme se cachent diverses interprétations : matériaux moléculaires pour l'électronique (dont les cristaux liquides ou les polymères sont des exemples) ou l'électronique à l'échelle de la molécule. Tous les exemples que nous avons cités jusqu'à présent faisaient intervenir des ensembles macroscopiques de molécules, i.e. des moles de molécules. La recherche se développe pour concevoir et réaliser des molécules se prêtant à des expériences d'électronique sur une seule entité moléculaire avec notamment des techniques de microscopie à champ proche (où la molécule joue le rôle de conducteur, de diode, de photodiode …). Par exemple le mouvement de miniaturisation de l'électronique (électronique portable, enregistrement de quantités de plus en plus grande d'information sur des surfaces de plus en plus petites, calcul quantique …) peut aboutir à la mise au point de dispositifs permettant de stocker l'information à l'échelle ultime, celle d'une seule molécule[31]… Le présent se conjugue déjà au futur. Conclusion Dans un monde qui va vers plus de complexité, le développement des matériaux moléculaires n'en est qu'à son début. Les possibilités offertes par la flexibilité de la chimie moléculaire et supramoléculaire qui ont ouvert ce cycle de leçons[32], la chimie des métaux de transition et la chimie du carbone, sont pour l'essentiel inexplorées mais immenses[33]. La compréhension fondamentale et pluridisciplinaire des propriétés de la matière, la capacité du chimiste à maîtriser la synthèse pour obtenir les propriétés souhaitées peuvent permettre de répondre de mieux en mieux aux nouveaux besoins de l'homme et de la société. À eux d'en faire bon usage. Remerciements Ce travail sur les matériaux moléculaires a été alimenté par de nombreuses discussions dans mon équipe, dans mon laboratoire et dans les nombreux établissements que j'ai fréquentés et financé par le Ministère de l'Education Nationale, le C.N.R.S., les contrats européens M3D et Molnanomag, l'ESF (Molecular Magnets). Les expériences ont été préparées par F. Villain. Les matériaux présentés ont été aimablement prêtés par de nombreux fournisseurs auxquels je suis reconnaissant. Je dédie cette contribution à la mémoire de deux scientifiques français dont j'ai beaucoup appris, Olivier Kahn décédé en décembre 1999 et Louis Néel, prix Nobel de Physique 1970, dont j'apprends la disparition.

 

VIDEO              CANAL  U             LIEN


(si la video n'est pas accéssible,tapez le titre dans le moteur de recherche de CANAL U.)

 
 
 
 

TRAITEMENT DE L'INFORMATION QUANTIQUE

 

Les impulsions laser ultrarapides : un nouveau support pour le traitement parallèle de l’information quantique
20 décembre 2013


En associant les approches de l’optique quantique et des impulsions laser ultrabrèves, des physiciens viennent de démontrer une nouvelle approche pour le traitement parallèle de l’information quantique. Contrairement aux dispositifs développés jusqu’à présent, le volume de l’information quantique pouvant être manipulé n’est pas limité par la taille du support physique lui-même, mais par les performances du système de détection.

Télécharger le PDF

Qu’il s’agisse de communiquer, de simuler ou de calculer, les systèmes de traitement de l’information sont des dispositifs matériels dans lesquels les informations élémentaires ont un support physique. Lorsque ces informations élémentaires sont des informations quantiques, dénommées q-bits, le choix du support est une question délicate qui conditionne la faisabilité des dispositifs. Aujourd’hui, dans les systèmes les plus performants chaque q-bit est matérialisé sur un ion piégé, un nanosystème ou encore un circuit supraconducteur. Particulièrement efficaces pour préserver les bits quantiques des perturbations et les faire interagir entre eux, la taille de ces supports est limitée par le nombre d’éléments qu’il est possible d’associer : tout au plus une dizaine. Des physiciens du Laboratoire Kastler Brossel - LKB (CNRS / UPMC / ENS) viennent de proposer et démontrer une nouvelle approche dans laquelle les divers q-bits sont véhiculés par des photons de fréquences différentes présents dans le faisceau d’un laser à impulsions ultrarapides. En associant les techniques de l’optique quantique pour la création des bits quantiques et de l’optique ultrarapide pour analyser les états créés, les chercheurs ont d’ores et déjà créé et manipulé en parallèle une dizaine de q-bits. Cette méthode ouvre de nombreuses perspectives dans le traitement parallèle de l’information quantique, car elle a pour avantage de n’être limitée que par les performances du système de détection. Ce travail est publié dans la revue Nature Photonics.


À côté des supports matériels, tels que les ions piégés ou les systèmes supraconducteurs, les multiples photons de fréquences différentes présents dans une onde lumineuse sont des candidats de choix comme support de l’information quantique. Quelques équipes de physiciens dans le monde explorent actuellement cette voie avec des stratégies différentes. Les physiciens du LKB ont choisi d’exploiter les centaines de milliers de fréquences optiques contenues dans les lasers à impulsions. Le faisceau laser utilisé par les chercheurs est une succession d’impulsions ultrabrèves de 150 femtosecondes. À la sortie du laser, ce faisceau traverse une cavité optique contenant un cristal non linéaire qui scinde chaque photon incident en deux photons « jumeaux ». Les contenus des divers canaux d’informations véhiculés par les photons de fréquences différentes ne sont alors plus indépendants : à chaque photon présent dans un canal correspond son jumeau présent dans un autre canal. À la sortie de cette cavité, cet état quantique complexe est analysé en le faisant interférer avec les impulsions d’un laser de référence dont on contrôle le profil temporel. Chaque forme réalisée lors de la détection correspond alors à un canal quantique différent dont on sonde le contenu. Ce sont au total 10 modes différents que les physiciens ont pu sonder, inviduellement et par paire. Les mesures effectuées leur ont permis de prouver que ces 10 canaux étaient effectivement 10 modes quantiques indépendants susceptibles de porter chacun un bit quantique. Après cette première expérience, les chercheurs travaillent à améliorer leur système de détection afin d’atteindre une cinquantaine de modes : une taille de système quantique encore jamais atteinte.

 

DOCUMENT             CNRS               LIEN

 
 
 
 

CARTOGRAPHIER LE MAGNÉTISME À L'ÉCHELLE DES ATOMES ...

 

Cartographier le magnétisme à l’échelle des atomes avec un nanodiamant
13 septembre 2013


Magnétisme , LPS - UMR 8502 , LAC - UPR 3321 , LPQM - UMR 8537 , nanoparticule , fluorescence , surface , microscope à force atomique

En analysant la fluorescence d’un nanodiamant approché à quelques dizaines de nanomètres d’une surface, des physiciens en ont cartographié le magnétisme.

GIF - 2.3 ko
Télécharger le PDF
 
La résolution spatiale d’une cartographie de champ magnétique est limitée par la taille de la sonde utilisée. Les capteurs de champ de petite taille et de bonne sensibilité, tels que les microsondes à effet Hall ou les micro-SQUID, moyennent le champ sur une surface dont la taille est d’une centaine de nanomètres. Des physiciens du Laboratoire Aime Cotton - LAC (CNRS / Univ. Paris-Sud / ENS Cachan) et du Laboratoire de photonique quantique et moléculaire - LPQM (CNRS / ENS Cachan), dans une collaboration avec le Laboratoire de physique des solides - LPS (CNRS / Univ. Paris-Sud) viennent de mettre en œuvre un nouveau type de sonde d’une taille mille fois plus faible : le centre coloré d’un nanodiamant qu’ils ont fixé au bout de la pointe d’un microscope à force atomique afin de le déplacer quelques dizaines de nanomètres au-dessus de la surface à étudier. La fluorescence de ce centre coloré dépend fortement du champ magnétique auquel il est soumis, ce qui en fait un détecteur très sensible et de taille atomique. La remarquable sensibilité au champ magnétique de ce dispositif, jointe à sa résolution spatiale, devrait permettre à ce microscope de trancher des débats actuels sur la nature de certaines structures magnétiques, ou de révéler le magnétisme orbital de mésostructures. Ce travail est publié dans la revue Nature Communications.

Les centres colorés du diamant sont des défauts d’un type particulier de la structure cristalline. A la place de deux atomes de carbone voisins se trouvent un atome d’azote et une lacune, c’est-à-dire une absence d’atome. Cette structure forme un atome artificiel dont la fluorescence varie de manière importante lorsqu’elle est excitée par un champ radiofréquence résonant. En présence d’un champ magnétique, cette fréquence de résonance varie d’environ 100 MHz par millitesla de champ appliqué selon l’axe reliant l’atome d’azote et la lacune. Les physiciens du LAC et du LPQM ont eu l’idée d’utiliser cette propriété, par ailleurs déjà bien connue et utilisée, pour réaliser un microscope magnétique d’un type nouveau. Après avoir choisi un nanodiamant d’une taille d’environ 20 nanomètres contenant un unique centre coloré, les chercheurs l’ont collé à la pointe d’un microscope à force atomique et illuminé par un faisceau laser vert. Ils ont placé ce dispositif sous un microscope optique permettant d’observer la pointe et de collecter la lumière de fluorescence du nanodiamant dans le vert tandis que celui-ci est soumis à une radio fréquence de fréquence variable. Les images, réalisées sur divers petits éléments magnétiques, démontrent la très grande sensibilité en champ magnétique de ce microscope, en révélant des détails jusqu’ici inobservés. Les chercheurs ont notamment utilisé ce dispositif pour cartographier à trois dimensions le champ magnétique produit par le vortex magnétique d’un petit objet magnétique en forme de carré et détecter le cœur de ce vortex. La limite de résolution spatiale de ce dispositif n’est maintenant plus dans la taille du capteur, de taille atomique (0.1 nm), mais dans la distance entre l’échantillon magnétique et la sonde. Les chercheurs tentent de réduire encore cette distance, actuellement un peu inférieure à 100 nm.

 

DOCUMENT                CNRS                   LIEN

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solf�ège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales / Confidentialite

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon