ecole de musique piano
     
menu
 
 
 
 
 
 

ÉLÉMENT

 

 

 

 

 

 

 

élément

Cet article fait partie du dossier consacré à la matière.


Entité chimique fondamentale commune aux diverses variétés d'un même corps simple ainsi qu'aux combinaisons de ce corps simple avec d'autres corps.

CHIMIE
1. Historique de la notion d'élément
1.1. Les conceptions anciennes
Il est aisé de constater que les corps sont faits de matières différentes, le bois, le fer, etc. Une fois acquis qu'une matière peut être constituée de plusieurs substances – le bronze est obtenu par le mélange du cuivre et de l'étain –, il était naturel de s'interroger sur la composition de toute matière. La diversité des propriétés des substances oriente vers l'idée qu'elles sont constituées, selon différentes combinaisons, d'un petit nombre de substances élémentaires. Ce sont les qualités de ces éléments qui expliqueraient celles des matières composées.

De là naquit, parmi différentes théories, celle des quatre éléments, attribuée à Empédocle d'Agrigente (ve s. avant J.-C.), qui a joui d'une grande faveur jusqu'au xviiie s. : la terre, le feu, l'air et l'eau sont les noms couramment donnés à ces éléments. Aristote (ive s. avant J.-C.) perfectionna cette conception en leur attribuant des qualités, comme le chaud et l'humide. La quintessence était un cinquième élément, plus subtil, exemple parmi d'autres de ce qu'une spéculation sans frein n'a pas manqué de produire. L'alchimie, dans sa visée de connaissance et de maîtrise de la matière, y participa largement.

1.2. Du xviie s. à Mendeleïev

Au xviie s. la chimie, encore peu distincte de l'alchimie, commença à devenir plus scientifique : la connaissance devenait celle de la société des savants, et non plus le secret de quelques uns ; et l'usage de l'expérimentation commençait à relever d'une attitude plus méthodique. On en observe un effet dans la nouvelle définition des éléments que proposa Robert Boyle (1627-1691) : on doit désigner par ce mot les matières qui, à l'expérience, résistent à toute tentative de décomposition. Cette nouvelle conception allait s'imposer petit à petit contre l'ancienne, jusqu'à triompher à l'époque de Lavoisier. Cette notion expérimentale d'élément avait comme faiblesse d'être relative aux possibilités techniques d'analyse du moment. Tel corps qui a résisté à toutes les tentatives de décomposition peut, analysé selon une méthode nouvelle, révéler une structure composée.

Au cours du xixe s., les chimistes identifièrent quelques dizaines d'éléments. La quête chimique étant devenue attentive à la mesure des quantités, des « poids » notamment, des rapports simples apparurent dans les résultats, et la théorie atomique fut remise en chantier pour les expliquer. On associa aux éléments divers types d'atomes, différant les uns des autres, pour le moins, par leurs masses. En les classant par « poids atomique » croissant, Dimitri Mendeleïev (1834-1907) observa que certaines propriétés revenaient périodiquement. Il put ainsi classer les 63 éléments connus en un tableau rectangulaire. Certaines cases restant vides, Mendeleïev put prédire l'existence des éléments correspondants ainsi que leurs propriétés, et l'expérience lui donna bientôt raison.

1.3. La conception moderne

Au début du xxe s., lorsque l'on a commencé à connaître la structure de l'atome – un noyau autour duquel gravitent des électrons –, il est devenu possible de redéfinir la notion d'élément. On appelle ainsi, depuis, un type d'atome : il est caractérisé par son numéro atomique Z, qui est le nombre des protons présents dans son noyau. C'est aussi celui des électrons, tant qu'il n'y a pas ionisation.

Pour un même numéro atomique, le nombre des neutrons peut subir quelques variations : par exemple, le chlore (Z = 17) en a 20 dans un cas sur quatre et 18 dans les trois autres. Comme le chlore, tout élément peut donc présenter des isotopes, dont les propriétés chimiques sont semblables puisqu'elles sont liées, pour l'essentiel, à la structure électronique.
Un élément n'est pas nécessairement un corps, en ce sens que l'on ne le trouve pas toujours tel quel dans la nature. Dans les conditions ordinaires, par exemple, il n'y a pas de gaz dont les corpuscules seraient les atomes d'oxygène (O). Celui que l'on désigne traditionnellement par ce nom est appelé dioxygène par les chimistes ; ses molécules sont faites de deux atomes (O2). L'ozone (O3), quoique constitué du même élément O, est un autre corps simple.

2. La dénomination des éléments
Chaque élément est donc exprimé par un symbole et un numéro d'ordre, le numéro atomique (symbole Z).
Le premier élément a pour symbole H et pour numéro atomique Z = 1. On l'appelle hydrogène. Le deuxième a pour symbole He et pour numéro atomique Z = 2. On l'appelle hélium. Et ainsi de suite.
Les noms des éléments sont d'origine très variée : inconnue pour certains, qui sont en usage depuis la nuit des temps, elle est pour d'autres liée aux circonstances de leur découverte ou aux caractéristiques de l'élément. L'hydrogène doit son nom au fait qu'il « engendre l'eau » (par combustion), le phosphore au fait qu'il « apporte la lumière », le chlore à sa couleur d'un « vert jaunâtre » : les trois noms ont été construits sur les racines grecques correspondantes. Les chimistes ont aussi créé des noms à partir de mots d'origine latine : rubidium signifie « rouge » ; l'iridium a été baptisé par référence à la variété des couleurs obtenues par sa dissolution dans les acides…
L'hélium a été découvert dans le spectre de la lumière solaire : son nom vient du mot grec désignant le Soleil. Le hafnium a été ainsi nommé par Coster et Hevesy en 1923 : ce nom, qui vient de Hafnia (ancienne appellation latine de Copenhague) a été définitivement adopté, après des dénominations très variées (norium en 1845, jargonium en 1869, nigrium puis celtium en 1911) dues aux longues vicissitudes qui ont accompagné sa découverte.
Le rhénium (Rhin) a été nommé ainsi par ses inventeurs, trois Allemands travaillant dans le laboratoire Nernst en 1925. En 1830, Nils Sefström appela vanadium un élément qu'il venait de découvrir, en l'honneur de la déesse scandinave de l'Amour, Vanadis.

Plus récemment, les noms de mendélévium, nobélium et lawrencium ont été donnés aux éléments 101, 102 et 103 en hommage à leurs découvreurs. À partir de l'élément 104, la communauté scientifique internationale a décidé d'attribuer désormais à tout élément un nom systématique, construit avec le suffixe « -ium » sur les racines des trois mots latins signifiant les trois chiffres de son numéro atomique, conformément au tableau suivant, et un symbole construit avec les initiales des trois racines concernées. Par exemple :
104 – unnilquadium – Unq
105 – unnilpentium – Unp
118 – ununoctium – Uuo
Mais ces noms systématiques sont ensuite remplacés par des noms moins « anonymes », après la confirmation de la découverte des éléments correspondants et entente entre leurs découvreurs et la communauté scientifique internationale. Ainsi, l'Union internationale de chimie pure et appliquée (IUPAC) a finalement attribué le nom de rutherfordium à l’élément 104, dubnium au 105, seaborgium au 106, bohrium au 107, hassium au 108, meitnerium au 109, darmstadtium au 110, roentgenium au 111, copernicium au 112, flérovium au 114 et livermorium au 116. Ces deux derniers éléments font directement référence au lieu de leur découverte : le Lawrence Livermore National Laboratory (États-Unis) et le Flerov Laboratory of Nuclear Reactions (Russie). En 2016, les éléments 113, 115, 117 et 18 ont été officiellement baptisés respectivement nihonium (Nh, de nihon, Japon), moscovium (Mc, de Moscou, capitale russe), tennessine (Ts, de Tennesse, État américain) et oganesson (Og, du n. de Y. Oganessian, physicien nucléaire russe).

3. La classification périodique des éléments
3.1. Une case, un élément

La classification périodique des éléments se présente sous la forme d'un tableau qui recense tous les éléments connus. Chacun d'entre eux y occupe une case et est désigné par son symbole, accompagné de deux nombres. Le plus petit, toujours entier, est le numéro atomique Z (correspondant au nombre de protons) ; il augmente d'unité en unité, à partir de 1.
L'autre est la masse molaire atomique M, appelée aussi masse molaire ou masse atomique. Cette dernière appellation reprend et corrige l'ancienne expression de « poids » atomique. Elle a cependant l'inconvénient de paraître désigner la masse de l'atome considéré, ce qui n'est pas le cas. Cette grandeur est la masse d'une mole de l'atome en question, autrement dit la masse de 6,02 × 1023 atomes de l'élément considéré (6,02 × 1023 étant le nombre d’Avogadro) ; elle s'exprime en grammes par mole (g.mol−1).
Pour en savoir plus, voir l'article mole.
La valeur de cette masse est souvent proche d'un entier, au point que les tableaux simplifiés donnent presque exclusivement des entiers. Ainsi l'hélium, de numéro atomique 2, a-t-il pour masse molaire 4,0026 g.mol−1, ce que l'on arrondit à 4. Cet entier A, le nombre de masse, correspond en fait au nombre de nucléons, c'est-à-dire le nombre de protons et de neutrons composant le noyau atomique. Puisque Z = 2, l'atome d'hélium comporte deux électrons ainsi que deux protons. Puisque A = 4, le nombre des neutrons est N = A − Z = 2.
Les masses molaires éloignées d'une valeur entière sont liées à la présence non négligeable d'un isotope. Ainsi, dans le cas du chlore (Z = 17), l'isotope 35 (18 neutrons) se rencontrant trois fois plus que l'isotope 37 (20 neutrons), on prend 35,5 comme masse molaire moyenne de l'élément chlore. En conséquence, la masse molaire moléculaire du dichlore (Cl2) a pour valeur 71.

3.2. Lignes et colonnes
Les différentes lignes du tableau périodique correspondent au remplissage des différentes couches électroniques des atomes. La première couche, la plus proche du noyau, ne peut recevoir que deux électrons. C'est pourquoi la première ligne ne comporte que deux cases : H et He. La deuxième couche peut recevoir huit électrons : dans la deuxième ligne, le numéro atomique va de 3 à 10 ; etc.
Chaque colonne, par conséquent, correspond à la façon dont est occupée la dernière couche électronique de chaque atome. Dans la première colonne figurent les éléments pour lesquels la couche la plus externe comporte un unique électron. L'hydrogène (H), en tête, n'en a qu'un en tout ; le lithium (Li), en dessous, en a 3 (= 2 + 1) ; le sodium (Na, pour natrium), sur la troisième ligne, possède 11 électrons (= 2 + 8 + 1) etc.
C'est ce nombre des électrons de la couche externe (également appelée couche de valence) qui détermine les propriétés chimiques des corps, expliquant que les différents éléments d'une même colonne présentent des propriétés commune. La première colonne est celle des métaux alcalins (lithium, sodium, etc.) ; la dernière colonne est celle des gaz rares, ou inertes (hélium, néon, argon, etc.), l'avant-dernière étant celle des halogènes (fluor, chlore, etc.).
Le principe de remplissage des lignes du tableau qui vient d'être esquissé n'est pas respecté partout. Les irrégularités de sa constitution tiennent au fait que le remplissage des couches électroniques suit, dans certains domaines, des règles un peu plus compliquées. On notera, en particulier, la famille des actinides, où figure l'uranium (U), de numéro atomique 92. Tous les éléments qui viennent après sont les transuraniens : ils n'existent pas dans la nature, ils ont été produits artificiellement.

4. Les éléments radioactifs et leurs transmutations
La physique nucléaire, contrairement à la chimie, prend en compte des réactions dans lesquelles des noyaux atomiques se transforment. On peut donc y voir de véritables transmutations d'éléments.
Le concept de nucléide (ou nuclide) qui a cours dans cette branche de la physique n'est autre que celui de type de noyau, défini par les nombres Z et A. Autrement dit, le cortège électronique n'est pas pris en considération.

4.1. Radioactivité et stabilité des éléments
Le phénomène de la radioactivité peut prendre différentes formes. Des noyaux de plutonium 244, par exemple (94 protons et 150 neutrons), émettent une particule, constituée de deux protons et de deux neutrons. Cette dernière est donc en fait un atome d'hélium complètement ionisé He2+ ou, si l'on préfère, un noyau d'hélium. Le noyau émetteur n'ayant plus que 92 protons, le plutonium est devenu uranium, sous la forme de l'uranium 240.
En se désintégrant, le noyau « père » donne un noyau « fils » qui peut à son tour être radioactif. De proche en proche on aboutit in fine à un nucléide stable.
La radioactivité est un phénomène naturel qui affecte surtout les gros noyaux (uranium, radium, polonium…), mais pas uniquement. La désintégration du carbone 14 obéissant à une loi connue, la présence de cet isotope permet la datation des fossiles. La radioactivité artificielle consiste à modifier un noyau lourd en le bombardant avec un projectile, qui peut être une particule, de façon à produire un nouveau noyau qui soit radioactif.

4.2. Production et utilisations énergétiques des éléments transuraniens
Les transuraniens sont des éléments radioactifs. On les obtient artificiellement et leur durée de vie peut être très brève. Parmi ceux déjà produits, celui qui a le plus grand numéro atomique est l'élément 116, qui a été obtenu en 2000 et dénommé Livermorium (Lv) en 2012. Ses 176 neutrons le rendent proche d'un îlot de stabilité, prévu par la théorie, qui serait atteint avec 184 neutrons.

La fission nucléaire consiste à casser des noyaux lourds, d'uranium par exemple, dans le but de produire une grande quantité d'énergie, que ce soit de façon brutale (bombe atomique) ou de façon contrôlée (électronucléaire) ; dans cette réaction, l'uranium disparaît en donnant deux autres éléments.
Pour en savoir plus, voir l'article centrale nucléaire.

La fusion nucléaire vise au même but, mais par l'opération inverse : un noyau de deutérium (ou hydrogène 2) et un de tritium (ou hydrogène 3) fusionnent pour donner un atome d'hélium. Cette réaction est provoquée lors de l'explosion d'une bombe thermonucléaire (ou bombe H) ; mais c'est elle aussi qui assure naturellement la production énergétique du Soleil. La réaction de fusion contrôlée constitue un enjeu énergétique, économique et environnemental de premier plan, c’est pourquoi elle est au cœur du projet ITER (International Thermonuclear Experimental Reactor), dont l’objectif est la construction d’un prototype de réacteur à fusion thermonucléaire contrôlée permettant de valider cette option comme source d’électricité. Dans le cas de la fission comme dans celui de la fusion, le dégagement d'énergie est corrélatif d'une diminution de la masse totale, conformément à la théorie de la relativité.

BIOLOGIE
Dans tous les organismes vivants, on admet l'existence constante de 27 corps simples : 11 non-métaux (carbone, hydrogène, oxygène, azote, soufre, phosphore, chlore, fluor, brome, iode, bore), 2 semi-métaux (silicium, arsenic) et 14 métaux (calcium, sodium, potassium, magnésium, fer, zinc, cuivre, nickel, cobalt, manganèse, aluminium, plomb, titane, étain). Les 11 éléments les plus abondants sont dits plastiques. Les autres sont des oligoéléments.

 

élément

Cet article fait partie du dossier consacré à la matière.
Entité chimique fondamentale commune aux diverses variétés d'un même corps simple ainsi qu'aux combinaisons de ce corps simple avec d'autres corps.

CHIMIE
1. Historique de la notion d'élément
1.1. Les conceptions anciennes
Il est aisé de constater que les corps sont faits de matières différentes, le bois, le fer, etc. Une fois acquis qu'une matière peut être constituée de plusieurs substances – le bronze est obtenu par le mélange du cuivre et de l'étain –, il était naturel de s'interroger sur la composition de toute matière. La diversité des propriétés des substances oriente vers l'idée qu'elles sont constituées, selon différentes combinaisons, d'un petit nombre de substances élémentaires. Ce sont les qualités de ces éléments qui expliqueraient celles des matières composées.

De là naquit, parmi différentes théories, celle des quatre éléments, attribuée à Empédocle d'Agrigente (ve s. avant J.-C.), qui a joui d'une grande faveur jusqu'au xviiie s. : la terre, le feu, l'air et l'eau sont les noms couramment donnés à ces éléments. Aristote (ive s. avant J.-C.) perfectionna cette conception en leur attribuant des qualités, comme le chaud et l'humide. La quintessence était un cinquième élément, plus subtil, exemple parmi d'autres de ce qu'une spéculation sans frein n'a pas manqué de produire. L'alchimie, dans sa visée de connaissance et de maîtrise de la matière, y participa largement.

1.2. Du xviie s. à Mendeleïev

Au xviie s. la chimie, encore peu distincte de l'alchimie, commença à devenir plus scientifique : la connaissance devenait celle de la société des savants, et non plus le secret de quelques uns ; et l'usage de l'expérimentation commençait à relever d'une attitude plus méthodique. On en observe un effet dans la nouvelle définition des éléments que proposa Robert Boyle (1627-1691) : on doit désigner par ce mot les matières qui, à l'expérience, résistent à toute tentative de décomposition. Cette nouvelle conception allait s'imposer petit à petit contre l'ancienne, jusqu'à triompher à l'époque de Lavoisier. Cette notion expérimentale d'élément avait comme faiblesse d'être relative aux possibilités techniques d'analyse du moment. Tel corps qui a résisté à toutes les tentatives de décomposition peut, analysé selon une méthode nouvelle, révéler une structure composée.

Au cours du xixe s., les chimistes identifièrent quelques dizaines d'éléments. La quête chimique étant devenue attentive à la mesure des quantités, des « poids » notamment, des rapports simples apparurent dans les résultats, et la théorie atomique fut remise en chantier pour les expliquer. On associa aux éléments divers types d'atomes, différant les uns des autres, pour le moins, par leurs masses. En les classant par « poids atomique » croissant, Dimitri Mendeleïev (1834-1907) observa que certaines propriétés revenaient périodiquement. Il put ainsi classer les 63 éléments connus en un tableau rectangulaire. Certaines cases restant vides, Mendeleïev put prédire l'existence des éléments correspondants ainsi que leurs propriétés, et l'expérience lui donna bientôt raison.

1.3. La conception moderne

Au début du xxe s., lorsque l'on a commencé à connaître la structure de l'atome – un noyau autour duquel gravitent des électrons –, il est devenu possible de redéfinir la notion d'élément. On appelle ainsi, depuis, un type d'atome : il est caractérisé par son numéro atomique Z, qui est le nombre des protons présents dans son noyau. C'est aussi celui des électrons, tant qu'il n'y a pas ionisation.

Pour un même numéro atomique, le nombre des neutrons peut subir quelques variations : par exemple, le chlore (Z = 17) en a 20 dans un cas sur quatre et 18 dans les trois autres. Comme le chlore, tout élément peut donc présenter des isotopes, dont les propriétés chimiques sont semblables puisqu'elles sont liées, pour l'essentiel, à la structure électronique.
Un élément n'est pas nécessairement un corps, en ce sens que l'on ne le trouve pas toujours tel quel dans la nature. Dans les conditions ordinaires, par exemple, il n'y a pas de gaz dont les corpuscules seraient les atomes d'oxygène (O). Celui que l'on désigne traditionnellement par ce nom est appelé dioxygène par les chimistes ; ses molécules sont faites de deux atomes (O2). L'ozone (O3), quoique constitué du même élément O, est un autre corps simple.

2. La dénomination des éléments
Chaque élément est donc exprimé par un symbole et un numéro d'ordre, le numéro atomique (symbole Z).
Le premier élément a pour symbole H et pour numéro atomique Z = 1. On l'appelle hydrogène. Le deuxième a pour symbole He et pour numéro atomique Z = 2. On l'appelle hélium. Et ainsi de suite.
Les noms des éléments sont d'origine très variée : inconnue pour certains, qui sont en usage depuis la nuit des temps, elle est pour d'autres liée aux circonstances de leur découverte ou aux caractéristiques de l'élément. L'hydrogène doit son nom au fait qu'il « engendre l'eau » (par combustion), le phosphore au fait qu'il « apporte la lumière », le chlore à sa couleur d'un « vert jaunâtre » : les trois noms ont été construits sur les racines grecques correspondantes. Les chimistes ont aussi créé des noms à partir de mots d'origine latine : rubidium signifie « rouge » ; l'iridium a été baptisé par référence à la variété des couleurs obtenues par sa dissolution dans les acides…
L'hélium a été découvert dans le spectre de la lumière solaire : son nom vient du mot grec désignant le Soleil. Le hafnium a été ainsi nommé par Coster et Hevesy en 1923 : ce nom, qui vient de Hafnia (ancienne appellation latine de Copenhague) a été définitivement adopté, après des dénominations très variées (norium en 1845, jargonium en 1869, nigrium puis celtium en 1911) dues aux longues vicissitudes qui ont accompagné sa découverte.
Le rhénium (Rhin) a été nommé ainsi par ses inventeurs, trois Allemands travaillant dans le laboratoire Nernst en 1925. En 1830, Nils Sefström appela vanadium un élément qu'il venait de découvrir, en l'honneur de la déesse scandinave de l'Amour, Vanadis.

Plus récemment, les noms de mendélévium, nobélium et lawrencium ont été donnés aux éléments 101, 102 et 103 en hommage à leurs découvreurs. À partir de l'élément 104, la communauté scientifique internationale a décidé d'attribuer désormais à tout élément un nom systématique, construit avec le suffixe « -ium » sur les racines des trois mots latins signifiant les trois chiffres de son numéro atomique, conformément au tableau suivant, et un symbole construit avec les initiales des trois racines concernées. Par exemple :
104 – unnilquadium – Unq
105 – unnilpentium – Unp
118 – ununoctium – Uuo
Mais ces noms systématiques sont ensuite remplacés par des noms moins « anonymes », après la confirmation de la découverte des éléments correspondants et entente entre leurs découvreurs et la communauté scientifique internationale. Ainsi, l'Union internationale de chimie pure et appliquée (IUPAC) a finalement attribué le nom de rutherfordium à l’élément 104, dubnium au 105, seaborgium au 106, bohrium au 107, hassium au 108, meitnerium au 109, darmstadtium au 110, roentgenium au 111, copernicium au 112, flérovium au 114 et livermorium au 116. Ces deux derniers éléments font directement référence au lieu de leur découverte : le Lawrence Livermore National Laboratory (États-Unis) et le Flerov Laboratory of Nuclear Reactions (Russie). En 2016, les éléments 113, 115, 117 et 18 ont été officiellement baptisés respectivement nihonium (Nh, de nihon, Japon), moscovium (Mc, de Moscou, capitale russe), tennessine (Ts, de Tennesse, État américain) et oganesson (Og, du n. de Y. Oganessian, physicien nucléaire russe).

3. La classification périodique des éléments
3.1. Une case, un élément

La classification périodique des éléments se présente sous la forme d'un tableau qui recense tous les éléments connus. Chacun d'entre eux y occupe une case et est désigné par son symbole, accompagné de deux nombres. Le plus petit, toujours entier, est le numéro atomique Z (correspondant au nombre de protons) ; il augmente d'unité en unité, à partir de 1.
L'autre est la masse molaire atomique M, appelée aussi masse molaire ou masse atomique. Cette dernière appellation reprend et corrige l'ancienne expression de « poids » atomique. Elle a cependant l'inconvénient de paraître désigner la masse de l'atome considéré, ce qui n'est pas le cas. Cette grandeur est la masse d'une mole de l'atome en question, autrement dit la masse de 6,02 × 1023 atomes de l'élément considéré (6,02 × 1023 étant le nombre d’Avogadro) ; elle s'exprime en grammes par mole (g.mol−1).
Pour en savoir plus, voir l'article mole.
La valeur de cette masse est souvent proche d'un entier, au point que les tableaux simplifiés donnent presque exclusivement des entiers. Ainsi l'hélium, de numéro atomique 2, a-t-il pour masse molaire 4,0026 g.mol−1, ce que l'on arrondit à 4. Cet entier A, le nombre de masse, correspond en fait au nombre de nucléons, c'est-à-dire le nombre de protons et de neutrons composant le noyau atomique. Puisque Z = 2, l'atome d'hélium comporte deux électrons ainsi que deux protons. Puisque A = 4, le nombre des neutrons est N = A − Z = 2.
Les masses molaires éloignées d'une valeur entière sont liées à la présence non négligeable d'un isotope. Ainsi, dans le cas du chlore (Z = 17), l'isotope 35 (18 neutrons) se rencontrant trois fois plus que l'isotope 37 (20 neutrons), on prend 35,5 comme masse molaire moyenne de l'élément chlore. En conséquence, la masse molaire moléculaire du dichlore (Cl2) a pour valeur 71.

3.2. Lignes et colonnes
Les différentes lignes du tableau périodique correspondent au remplissage des différentes couches électroniques des atomes. La première couche, la plus proche du noyau, ne peut recevoir que deux électrons. C'est pourquoi la première ligne ne comporte que deux cases : H et He. La deuxième couche peut recevoir huit électrons : dans la deuxième ligne, le numéro atomique va de 3 à 10 ; etc.
Chaque colonne, par conséquent, correspond à la façon dont est occupée la dernière couche électronique de chaque atome. Dans la première colonne figurent les éléments pour lesquels la couche la plus externe comporte un unique électron. L'hydrogène (H), en tête, n'en a qu'un en tout ; le lithium (Li), en dessous, en a 3 (= 2 + 1) ; le sodium (Na, pour natrium), sur la troisième ligne, possède 11 électrons (= 2 + 8 + 1) etc.
C'est ce nombre des électrons de la couche externe (également appelée couche de valence) qui détermine les propriétés chimiques des corps, expliquant que les différents éléments d'une même colonne présentent des propriétés commune. La première colonne est celle des métaux alcalins (lithium, sodium, etc.) ; la dernière colonne est celle des gaz rares, ou inertes (hélium, néon, argon, etc.), l'avant-dernière étant celle des halogènes (fluor, chlore, etc.).
Le principe de remplissage des lignes du tableau qui vient d'être esquissé n'est pas respecté partout. Les irrégularités de sa constitution tiennent au fait que le remplissage des couches électroniques suit, dans certains domaines, des règles un peu plus compliquées. On notera, en particulier, la famille des actinides, où figure l'uranium (U), de numéro atomique 92. Tous les éléments qui viennent après sont les transuraniens : ils n'existent pas dans la nature, ils ont été produits artificiellement.

4. Les éléments radioactifs et leurs transmutations
La physique nucléaire, contrairement à la chimie, prend en compte des réactions dans lesquelles des noyaux atomiques se transforment. On peut donc y voir de véritables transmutations d'éléments.
Le concept de nucléide (ou nuclide) qui a cours dans cette branche de la physique n'est autre que celui de type de noyau, défini par les nombres Z et A. Autrement dit, le cortège électronique n'est pas pris en considération.

4.1. Radioactivité et stabilité des éléments
Le phénomène de la radioactivité peut prendre différentes formes. Des noyaux de plutonium 244, par exemple (94 protons et 150 neutrons), émettent une particule, constituée de deux protons et de deux neutrons. Cette dernière est donc en fait un atome d'hélium complètement ionisé He2+ ou, si l'on préfère, un noyau d'hélium. Le noyau émetteur n'ayant plus que 92 protons, le plutonium est devenu uranium, sous la forme de l'uranium 240.
En se désintégrant, le noyau « père » donne un noyau « fils » qui peut à son tour être radioactif. De proche en proche on aboutit in fine à un nucléide stable.
La radioactivité est un phénomène naturel qui affecte surtout les gros noyaux (uranium, radium, polonium…), mais pas uniquement. La désintégration du carbone 14 obéissant à une loi connue, la présence de cet isotope permet la datation des fossiles. La radioactivité artificielle consiste à modifier un noyau lourd en le bombardant avec un projectile, qui peut être une particule, de façon à produire un nouveau noyau qui soit radioactif.

4.2. Production et utilisations énergétiques des éléments transuraniens
Les transuraniens sont des éléments radioactifs. On les obtient artificiellement et leur durée de vie peut être très brève. Parmi ceux déjà produits, celui qui a le plus grand numéro atomique est l'élément 116, qui a été obtenu en 2000 et dénommé Livermorium (Lv) en 2012. Ses 176 neutrons le rendent proche d'un îlot de stabilité, prévu par la théorie, qui serait atteint avec 184 neutrons.

La fission nucléaire consiste à casser des noyaux lourds, d'uranium par exemple, dans le but de produire une grande quantité d'énergie, que ce soit de façon brutale (bombe atomique) ou de façon contrôlée (électronucléaire) ; dans cette réaction, l'uranium disparaît en donnant deux autres éléments.
Pour en savoir plus, voir l'article centrale nucléaire.

La fusion nucléaire vise au même but, mais par l'opération inverse : un noyau de deutérium (ou hydrogène 2) et un de tritium (ou hydrogène 3) fusionnent pour donner un atome d'hélium. Cette réaction est provoquée lors de l'explosion d'une bombe thermonucléaire (ou bombe H) ; mais c'est elle aussi qui assure naturellement la production énergétique du Soleil. La réaction de fusion contrôlée constitue un enjeu énergétique, économique et environnemental de premier plan, c’est pourquoi elle est au cœur du projet ITER (International Thermonuclear Experimental Reactor), dont l’objectif est la construction d’un prototype de réacteur à fusion thermonucléaire contrôlée permettant de valider cette option comme source d’électricité. Dans le cas de la fission comme dans celui de la fusion, le dégagement d'énergie est corrélatif d'une diminution de la masse totale, conformément à la théorie de la relativité.

BIOLOGIE
Dans tous les organismes vivants, on admet l'existence constante de 27 corps simples : 11 non-métaux (carbone, hydrogène, oxygène, azote, soufre, phosphore, chlore, fluor, brome, iode, bore), 2 semi-métaux (silicium, arsenic) et 14 métaux (calcium, sodium, potassium, magnésium, fer, zinc, cuivre, nickel, cobalt, manganèse, aluminium, plomb, titane, étain). Les 11 éléments les plus abondants sont dits plastiques. Les autres sont des oligoéléments.

 

DOCUMENT   Larousse    LIEN

 
 
 
 

CHIMIE POLLUANTE, CHIMIE NON-POLLUANTE ET CHIMIE DÉPOLLUANTE

 

 

 

 

 

 

 

Texte de la 292e conférence de l’Université de tous les savoirs donnée le 18 octobre 2000. Chimie polluante, chimie non-polluante, chimie dépolluante par Guy Ourisson Au fond, j'aurais dû proposer un autre titre : « Chimie Noire, Chimie Rouge, Chimie Blanche, Chimie Verte, Chimie Rose ». Et c'est bien ainsi que je vais traiter mon sujet. Je suis à la fin d'une carrière de chimiste, que j'ai été heureux de pouvoir mener àbien. J'ai passé toute mon enfance dans une usine de produits chimiques, à Thann, dans le Sud de l'Alsace, où mes camarades et moi jouions dans les ateliers de fabrication, insouciants des odeurs de chlore, d'acide chlorhydrique ou d'anhydride sulfureux. Les énormes charpentes centenaires des chambres de plomb, édifiées avec le concours de Monsieur de Gay-Lussac, faisaient d’admirables cadres pour des parties de cache-cache. Quand j'ai été élu à la Présidence de l'Académie des Sciences, le magazine Marianne a publié un écho disant que cette élection avait donné des boutons à certains membres du Cabinet de Madame Voynet, parce que j'étais considéré comme « un croisé de la Chimie ». J'ai pris cet écho comme un compliment, bien que je me sente plus proche de bien des environnementalistes qu'ils ne le croient. Mais vous êtes prévenus : mon propos sera celui d'un « croisé de la Chimie ». La Chimie a été noire, et elle a été rouge. Elle a été noire, c'est à dire polluante. Les gravures d'il y a un siècle, représentant l'usine de Thann dont je vous parlais, insistent sur ce qui démontrait la prospérité de l'usine : les épaisses volutes de fumée sortant des cheminées. Ce n’est qu’un exemple, et il n'y avait bien sûr pas que les industriels de la chimie qui se flattaient de cracher de la fumée noire. Notez cependant que ces fumées ne sortent pas nécessairement des ateliers de fabrication, mais plutôt des centrales dans lesquelles était brûlé du charbon. Ces fumées noires étaient aussi celles qui régnaient dans nos villes où chaque foyer (notez le terme) se chauffait par une cheminée brûlant du charbon : de l'anthracite ou des boulets. Ceux d'entre vous qui n'ont pas eu tous les jours à recharger une chaudière à charbon, dans l'atmosphère suffocante due à la combustion du soufre résiduel, ceux qui n'ont pas connu Londres dans le brouillard jaune dû aux innombrables cheminées individuelles, ceux-là ne savent pas ce qu'est une pollution atmosphérique ! Il est vrai que, dans la villa que nous habitions à Thann, dans l'enceinte de l'usine, il était inutile de laver les voilages des fenêtres : ils partaient en charpie au lavage et il fallait les changer tous les ans. Il fallait aussi changer tous les ans ou tous les deux ans les arbustes d'ornement plantés en bordure de l'usine. C'était une usine noire. En ce temps, avant-guerre, il n’était pas possible de mesurer la pollution atmosphérique, sinon pour des concentrations plus élevées que ce que mesurait le nez : une forte odeur de SO2 voulait dire que le vent avait tourné à l'Ouest et qu’il y avait une fuite ;une forte odeur de chlore, qu'il avait tourné à l'Est et qu’il y avait une fuite – et un coup de téléphone au contremaître responsable réglait le problème. Cependant, le travail à l'usine et notre vie familiale dans l'usine n'étaient pas considérés comme mortifiants ou morbifiques. Je n'en déduis pas que c'était une situation idéale, loin de là. Je veux simplement dire que nous revenons de loin. Des photographies récentes de l'usine de Thann ou de toute autre usine chimique ne montrent jamais de fumées noires ; tout au plus des volutes blanches de vapeur d'eau. Peut-être influent-elles sur le climat local.Il y a même une certaine prétention à croire que nos petits moyens ont une puissance suffisante pour cela... « Noire », la chimie l'était aussi d'une façon plus insidieuse, invisible et inodore. Cette noirceur clandestine, je l'illustrerai à nouveau par l'exemple de l'usine de Thann. Cette usine a longtemps eu une exclusivité en France : elle produisait de la potasse et du chlore par électrolyse du chlorure de potassium extrait des mines de potasse d'Alsace, toutes proches. Cette électrolyse se faisait avec des cathodes de mercure, au moment même où, pour réussir l'examen de chimie minérale à la Sorbonne, il fallait pouvoir expliquer pour quelles bonnes raisons théoriques cette électrolyse, possible avec le chlorure de sodium, était impossible avec le chlorure de potassium. Thann produisait de la potasse et du chlore. Mais Thann consommait du mercure, alors qu'en principe ce métal toxique ne devait pas quitter l'atelier de production : il ne devait se retrouver ni dans le chlore ni dans la potasse. Il n’aurait pas fallu en perdre, vu son prix. Pourtant, il s'en perdait quelques kilos tous les ans. Ce n'est que dans les années suivant la guerre que les méthodes analytiques sont devenues suffisamment sensibles pour qu'il soit possible de retrouver des teneurs inacceptables de mercure dans les sédiments de la petite rivière passant à côté de l'usine, la Thur. Une fois les fuites de mercure localisées, il devint possible de les colmater, puis de nettoyer la rivière, et de mettre au point une production « propre », pour laquelle l'usine de Thann obtint l'un des premiers trophées nationaux pour son action efficace de protection de l'environnement. Ceci n'est qu'un exemple. La règle qu'appliquent toutes les usines chimiques « civilisées » est de chercher à limiter ce qui sort de l'usine aux produits destinés à la vente, à de l'eau propre, de l'azote ou de l'oxygène, des matériaux inertes utilisables éventuellement dans le bâtiment ou les travaux publics... Ne me faites pas dire que c'est toujours le cas, mais toute déviation à cette règle est reconnue comme une déficience à corriger. Ne me faites pas non plus dire que toute déviation constitue un danger : il est bien probable que les habitants de Vieux-Thann, en aval des rejets de mercure méconnus, contenaient dans leur corps moins de mercure venant de l'usine de Thann que ne leur en procuraient les amalgames bouchant leurs dents cariées. Mais la chimie n'est-elle pas rouge ? N'est-elle pas la source d'accidents ?Le voisinage de ses centres de production n'est-il pas dangereux ? Les noms de Seveso ou de Bhopal ne sont-ils pas ceux de catastrophes majeures ? Bhopal assurément. Des milliers de victimes. Un accident rendu possible parce que les mesures de sécurité normales dans une usine occidentale n'étaient pas respectées dans cette filiale indienne de la société-mère américaine. Il n'y a pas de petit profit. Comme en outre le bidonville de Bhopal cernait l'usine, l'incident est devenu une catastrophe. Et cette catastrophe a pris un tour insoutenable, quand les avocats spécialisés se sont abattus sur les victimes pour les convaincre d'engager des procès dont ils partageraient les bénéfices. La catastrophe est devenue un scandale. Et Seveso, dans le Nord de l'Italie, un pays sans bidonville ? Le Monde parlait encore tout récemment de la « catastrophe » de Seveso et de ses « milliers de victimes ». Il est nécessaire de rappeler les faits. Une explosion nocturne a conduit à la formation d'un nuage de vapeur d'eau, de soude, de phénol, de phénols chlorés, le tout évidemment très irritant, contenant des teneurs mesurables et importantes de chlorodioxines, dont la célèbre « dioxine ». Ce nuage a frappé directement les animaux dans les champs et les clapiers situés sur sa trajectoire et a provoqué la mort de ces animaux. La dioxine qu'il contenait a provoqué chez de nombreux habitants, par une réaction bien connue, une « chloracné », c'est à dire des boutons d'autant plus désagréables qu'ils sont parfois longtemps récidivants. Les habitants ont été déplacés, leurs maisons ont été détruites, les moutons et autres animaux de la région ont été abattus et incinérés, la couverture de terre a été enlevée et transportée vers des centres d'incinération spécialisés, un trafic s'est établi pour évacuer en douce, en dehors de tous les règlements, des détritus contaminés vers des sites non-autorisés. Bref, il s'en est suivi toute une série de conséquences graves et frisant le scandale. Et les milliers de victimes humaines ? En fait, il n'y en a aucune, ou plutôt qu'une seule : le directeur de l'usine, qui a été abattu quelques années plus tard, dans l'un des attentats des « années de plomb » italiennes. Des études épidémiologiques sérieuses ont fait le bilan de l'apparition de cancers dans la population exposée à l'accident de Seveso. Les résultats en ont été publiés ; ils ne montrent aucune différence significative entre les taux de cancers de cette population et ceux de populations éloignées de l'accident . Le taux de cancers du sein a même été plus faible, sur vingt ans, pour les plus exposés. Seveso a été un accident qui n'aurait pas dû avoir lieu ; ses suites ont constitué un traumatisme majeur pour des centaines de personnes, mais on ne peut pas dire que cela ait été une « catastrophe » ou alors il faudrait trouver un autre terme pour les catastrophes réelles qui se produisent chaque semaine sur la planète. Il y a évidemment une autre façon pour une industrie comme l’industrie chimique d'être rouge : c'est d'être dangereuse pour ses ouvriers. Nous disposons en France d'une source précieuse de renseignements grâce à la Caisse nationale de l'Assurance Maladie des Travailleurs Salariés, qui établit chaque année des statistiques par branche d'activité professionnelle. On y voit par exemple qu'en 1955, dans l'industrie chimique, il y avait eu 51 accidents avec arrêt de travail par million d'heures travaillées. En 1991, ce taux de fréquence des accidents avec arrêt était tombé de 51 à 16 et il est actuellement à 12, c'est à dire moins que dans l'industrie du vêtement et le plus bas de l'ensemble des branches d'activité. Et l'indice de gravité correspondant, l'indice qui mesure les incapacités temporaires ou définitives, est aussi au niveau le plus bas de toutes les branches industrielles. Pendant le même temps, dans le bâtiment et les travaux publics, le taux est passé de 94 à 60, c'est à dire cinq fois plus élevé. La prochaine fois que vous passerez à côté d'un chantier, comptez les têtes sans casques et les mains sans gants... La chimie n'est pas une industrie rouge pour ses producteurs, mais cela ne s'est réalisé que par un effort déterminé. À ce propos, je dois ajouter que l'enseignement de la chimie a enfin pris un tournant. Quand j'étais étudiant, j'ai appris par mes professeurs de belles histoires de beaux accidents. Mais personne ne m'avait appris comment éviter les accidents. J'espère ne pas me tromper en disant qu'il n'est plus possible maintenant pour un lycéen ou un étudiant d'entrer dans un laboratoire de travaux pratiques sans porter une blouse de coton et des lunettes de protection. Et il y a vraiment longtemps que je n'ai plus vu d'étudiant ou de chercheur fumer dans un laboratoire, alors que cela était fréquent il y a trente ans, avec les conséquences que l'on peut en attendre : quelques beaux incendies d'acétone ou d'éther. Je parlerai dans un moment des conséquences invisibles. Ni noire ni rouge, comment la chimie peut-elle être verte ? C'est là une notion nouvelle, mais une notion acceptée au point qu'il existe un journal spécialisé depuis deux ans dans la publication des travaux de chimie respectueuse de l'environnement. Il s'appelle bien sûr Green Chemistry. Le concept est simple : peut-on produire les matières chimiques qui nous sont utiles par des procédés doux, des procédés verts, sans réactif ou sous-produit toxique, en dépensant peu d'énergie et peu de matières premières non-renouvelables ? Peut-on remplacer des produits conduisant, après usage, à des pollutions, par des équivalents aussi efficaces, mais conduisant à des effluents bénins ? La réponse est dans presque tous les cas : « oui, on le peut, mais c'est plus cher », ou « c'est moins commode », ou « on ne peut pas en produire autant ». Ce dilemme n'est pas nouveau : par exemple il a déjà fallu remplacer il y a quelque dizaines d'années les premiers détergents par des produits un peu plus chers, mais biodégradables. Le concept de « chimie verte », conduisant à faire le bilan écologique complet d'une production, est nouveau. Il conduit à un renouveau d'intérêt pour les procédés catalytiques, dans lesquels en principe le catalyseur n'est pas du tout consommé et ne fait que faciliter une réaction. Il conduit à proscrire des réactifs toxiques comme le phosgène, mais à en trouver des équivalents pour pouvoir continuer à produire les mousses de polyuréthanes qui remplissent les coussins de nos voitures, à contrôler les réactions avec une très grande finesse pour éviter la formation de sous-produits potentiellement dangereux comme les dioxines, ou simplement inutiles, à utiliser des réactions sans solvants, toujours difficiles à récupérer, etc. Retenons simplement qu'il y a de plus en plus de chercheurs engagés dans cette voie, mais qu'il reste énormément à faire pour que la chimie soit vraiment verte. En fait, beaucoup de ces applications apparemment banales sont peut-être les plus difficiles à verdir. Je citerai seulement un exemple. Le nettoyage à sec de nos vêtements se fait avec des solvants. Jusque dans les années 1950 en tout cas, le solvant de choix pour cela était le benzène. On savait qu'il pouvait être toxique, et qu'il était inflammable, mais il était bon marché et efficace. Puis sont venus les solvants chlorés, ininflammables, bon marché, et bien volatils, ne laissant pas d'odeur. Mais leur récupération, si elle est facile à 99 %, est difficile à 100 %. La solution verte serait par exemple de tenter le nettoyage par le gaz carbonique supercritique : excellent solvant, ni toxique ni inflammable, mais exigeant de remplacer par des installations complexes, sous pression, tous les ateliers actuels. L'eau supercritique serait encore plus verte. Je doute que son utilisation soit compatible avec nos vêtements actuels... et seriez-vous prêts à payer peut-être dix fois plus cher le nettoyage de vos cravates ? Noire, rouge, verte. Reste la chimie rose. C'est avant tout celle qui nous soigne. Sans chimie, pas de médicaments vraiment efficaces. Je n'en parlerai pas davantage. Mais la chimie rose, c'est aussi celle qui dépollue. Par exemple, nous en bénéficions tous les jours, simplement en buvant un verre d'eau de ville. Aucune eau naturelle ne reste pure, potable, très longtemps. Elle sort de la source, et son destin est de devenir rapidement le foyer de larves de moustiques, de sangsues, d'escargots d'eau, de daphnies, et de bien des micro-organismes dont certains n'attendent que d'être bus pour devenir des parasites dangereux. Avant la guerre, il n'était pas question de boire l'eau du robinet sans l'avoir fait bouillir, tout au moins dans les régions bénies du Sud de la Loire. Actuellement, dans bien des pays, c'est encore le cas. Si notre eau est potable, nous le devons exclusivement à la chimie. À la chimie qui sait produire les membranes de filtration, au chlore que l'on sait additionner en quantités minimes et dosées, à l'ozone qui permet des traitements encore plus doux et verts. Quand nous l'avons bue et éliminée, c'est encore une chimie douce, une chimie rose, qui nous permet de la traiter puis de la rejeter sans trop de dégâts sur l'environnement. Floculants, additifs, contrôles chimiques multiples, heureusement combinés à des traitements microbiologiques, font des usines de traitement des eaux usées de véritables usines chimiques roses. Mon propos ne serait pas complet si je n'ajoutais pas quelques faits. Les journaux sèment la peur : peur des pollutions, peur des intoxications, peur des dangers qui nous guettent. Retenez, même si cela n'a plus rien à voir directement avec ma chimie arc-en-ciel, quelques faits : - Nous gagnons actuellement tous les ans un trimestre supplémentaire d'espérance de vie : un an tous les quatre ans, et parmi les petites filles nées cette année, on peut prévoir que la moitié deviendront centenaires. Ceci n'est guère compatible avec l'idée d'un monde de plus en plus dangereux. Dans nos pays, la vie est en fait de moins en moins dangereuse. En partie grâce à la chimie. - Dans une mauvaise année, celle où il y aurait un accident chimique vraiment très grave, il pourrait y avoir peut-être une dizaine de victimes. Or, il y a en France près de dix mille morts prématurées par an, par suite des accidents de la route. - Et le tabac, à lui seul, est responsable de 40 000 à 60 000 morts prématurées par an. Ces morts sont dues bien entendu aux produits chimiques contenus dans la fumée de tabac. Ce sont, de très loin, les morts les plus nombreuses que l'on puisse attribuer à la Chimie. Cette chimie-là est rouge, rouge-sang.

 

 VIDEO       CANAL  U         LIEN

 
 
   Fichier à télécharger : CHIMIE 5
 
 

LES MATÉRIAUX MOLÉCULAIRES

 

 

 

 

 

 

 

Texte de la 240e conférence de l’Université de tous les savoirs donnée le 27 août 2000.Les matériaux moléculaires ou : de la molécule au matériau …par Michel Verdaguer Il est trivial de dire que la notion de matériau a scandé l’histoire de l’humanité : les « âges » qui structurent l’histoire de l’homme portent le nom de matériaux : âge de la pierre, âge du bronze, âge du fer, âge du silicium ou du nylon. Un seul de ces matériaux est un matériau (macro)moléculaire, c’est le nylon, mais c’est le plus récent, le plus complexe, le plus seyant[1]. Qu'est-ce qu'un matériau moléculaire ? Avant toute chose, il est souhaitable de définir ce que l’on entend par matériau moléculaire. Un matériau moléculaire est un matériau constitué de molécules[2]. Une molécule est un ensemble d’atomes reliés entre eux par des liaisons chimiques covalentes. Un matériau est une substance utile qui, convenablement mise en forme, est insérée dans un dispositif pour y remplir une fonction grâce à ses propriétés. C'est souvent un solide. Les matériaux moléculaires sont d'une grande diversité, de la nappe de l’incroyable pique-nique du 14 juillet 2000 (composite de polymères) aux dispositifs d’affichage des écrans de micro-ordinateurs (cristaux liquides). Les matériaux moléculaires parmi les autres matériaux Les grandes classes de matériaux utilisés par l'homme sont les métaux, les céramiques, les polymères[3]. Cette classification, pour une part arbitraire, ne comporte pas de matériau moléculaire au sens strict. Mais les polymères sont des molécules géantes (macromolécules). Chaque type de matériau a des propriétés caractéristiques (mécaniques, physiques, chimiques), correspondant à la structure et au type de liaison concerné : les métaux (liaison métallique) sont des assemblages d'atomes. Ils sont conducteurs, durs, à température de fusion élevée, malléables, ductiles, denses, réfléchissants et opaques. Les céramiques (liaison ionique) sont des assemblages d'ions isolants, réfractaires, denses, résistants mécaniquement et thermiquement mais cassants et fragiles. Les polymères (liaison covalente) sont légers, faciles à mettre en forme, isolants, peu rigides, souvent peu stables à la température. Quand un besoin n'est pas couvert par les grandes classes de matériaux, on fait appel à des composites, mélange complexe de matériaux ou on en crée de nouveaux. Il existe une véritable science des matériaux qui les étudie, les améliore et les crée[4]. Parmi les matériaux nouveaux, figurent précisément les matériaux moléculaires. Contrairement aux céramiques et aux métaux, obtenus à très haute température (donc coûteux en énergie), les matériaux moléculaires et les polymères sont obtenus dans des conditions douces de température et de pression. Ils sont légers, transparents, souvent délicatement colorés, faciles à mettre en forme ; ils sont souvent biocompatibles, biodégradables, recyclables. Dans le cycle des matériaux (Fig. 1), où le souci de l'environnement grandit, ces dernières propriétés sont importantes. Les matériaux moléculaires sont cependant fragiles et peuvent vieillir rapidement (sensibles à l'air, à la lumière …). Les matériaux moléculaires dans l’histoire Un matériau répond le plus souvent à un besoin, individuel ou social. Dans l'histoire, l'apparition de nouveaux matériaux correspond à l'évolution des besoins et à la capacité de l'homme à maîtriser le processus de fabrication du matériau[5] (Fig. 2). La protection contre les éléments est à l'origine de l'utilisation des matériaux moléculaires que sont les fibres naturelles végétales (lin, chanvre, coton à base de cellulose), ou animales (laine, soie à base de polypeptides), les fibres modifiant la matière première naturelle (soie artificielle, nitrate et acétate de cellulose …) ou plus tard les fibres purement synthétiques (nylons)[6]. L'évolution du naturel au synthétique est une constante dans l'histoire des matériaux moléculaires : la nature et les systèmes biologiques sont une source permanente d'exemples, d'inspiration et d'espoir. L'époque contemporaine marque l'accélération vers l'utilisation de matériaux complexes, notamment moléculaires. Le coût des matériaux moléculaires La figure 3 indique le coût des matériaux dans diverses branches industrielles, exprimé en euros par kilogramme. Les matériaux moléculaires interviennent peu dans les industries de la construction. Mais dès que le poids devient un critère de choix (emballage, transport), quand les autres exigences deviennent complexes (équipement sportif, santé …), ils prennent une place importante. Les multiples travaux fondamentaux et appliqués pour leur production industrielle contribuent à l'élévation du coût par unité. Par exemple, les lentilles de contact sont de petits chefs-d'œuvre de transparence, de légèreté, de précision optique et mécanique … Comment créer un matériau moléculaire ? L'élaboration d'un matériau est un long processus qui va de la matière première au produit[7]. Nous n'abordons ici que deux aspects fondamentaux : a) la liaison covalente sur laquelle repose l'existence de molécules stables (dihydrogène, H2 ou fluorure d'hydrogène, HF) et b) les interactions intermoléculaires sur lesquelles repose la construction des solides moléculaires. Nous n'abordons pas les problèmes très importants de mise en forme qui permettent de passer du système moléculaire doté des propriétés requises au matériau. L'existence d'une molécule repose sur l'interaction des atomes qui la constituent. Par combinaison et recouvrement des orbitales atomiques se forment des orbitales moléculaires qui décrivent les électrons dans la molécule[8]. Dans H2, les deux orbitales atomiques forment deux orbitales moléculaires ; les deux électrons se placent dans l'orbitale moléculaire de plus basse énergie (dite liante). L'orbitale la plus haute reste vide (antiliante). La molécule est plus stable que les atomes séparés. Les électrons de la liaison forment un doublet liant. Ils sont également partagés par les deux atomes. La liaison est dite covalente. Pour la casser, il faut fournir une grande quantité d'énergie (environ 450 kiloJoules par mole – ou kJ mol-1 – ; la mole est l'unité de quantité de matière. Au contraire, la molécule HF est formée par deux atomes différents : le fluor et l'hydrogène dont l'énergie des orbitales est différente. La liaison HF est encore plus forte que celle de H2 : 550 kJ mol-1. Mais le doublet de la liaison n'est plus partagé de manière égale entre H et F, il est « attiré » par l'atome de fluor, plus électronégatif ; il apparaît un moment dipolaire électrique dirigé du fluor vers l'hydrogène ; la liaison devient partiellement ionique. Six autres électrons du fluor forment trois doublets non liants. Le dipôle électrique est à l'origine d'interactions intermoléculaires, d'autant plus fortes que le fluor est très électronégatif et que l'hydrogène, petit, peut s'approcher très près du fluor voisin. Ces liaisons hydrogène existent dans l'eau liquide ou solide (glace) où le moment dipolaire électrique O-H est également important. Ces interactions expliquent la structure de la glace et déterminent les températures de changement d'état : pour l'eau, la température d'ébullition Téb est élevée, 100° Celsius, à cause des liaisons hydrogène. Pour le dihydrogène, apolaire, les interactions sont au contraire très faibles (interactions de van der Waals) et la température d'ébullition est très basse (-253° C !). Lorsque l'on place du chlorure de sodium NaCl (sel de cuisine) dans l'eau, le cristal est dissocié et les ions positifs sodium Na+ (cations) et négatifs chlorure Cl- (anions) se « solvatent » i.e. s'entourent de molécules d'eau grâce à des interactions ion-dipôle : ceci est à la base des propriétés de solvant de l'eau et de ses extraordinaires propriétés de transport de matière en biologie et en géologie : l'eau dissout les matières polaires ou ioniques (par interaction hydrophile) et n'interagit pas avec les molécules (ou les parties de molécules) non polaires (par interaction hydrophobe). C'est de la structure et de la nature de la liaison dans les molécules et des interactions entre les molécules que naissent les propriétés, la fonction et l'intérêt du matériau[9]. Molécules et matériaux moléculaires au quotidien Nous utilisons chaque jour des matériaux moléculaires[10] : fibres textiles (vêtements), savons (lessives), cristaux liquides (affichage : montres, ordinateurs, thermomètres) pour ne prendre que trois exemples. Polyamides, polyesters[11] Les fibres textiles artificielles sont des (macro)molécules, formés par l'addition ou la condensation multiple de petites molécules identiques : il se forme de longues chaînes[12]. Les propriétés du matériau reposent sur la structure des molécules de départ, sur les interactions entre les chaînes, puis sur la mise en forme. Ainsi les polyamides sont des polymères obtenus par la création de groupements amide ou peptidique, R-CO-NH-R', tandis que les polyesters comportent des groupements esters, R-CO-O-R'. La liaison hydrogène dans les polyamides renforce les interactions entre les chaînes, donc les propriétés mécaniques des polymères, qui sont excellentes (Fig. 4). Par contre, elle permet l'interaction avec des molécules d'eau : le nylon, qui est un polyamide, retiendra l'eau davantage que les polyesters (qui pourront donc utilisés comme vernis, au contact de l'eau …). D'autres interactions entre les chaînes - par exemple des interactions de van der Waals entre les noyaux aromatiques dans le Kevlar (Fig. 4), améliorent les propriétés mécaniques : le Kevlar est utilisé dans les tissus de protection anti-balles … Le besoin en matériaux complexes conduit à la préparation de composites. Ainsi, la nappe du pique-nique de la méridienne du 14 juillet 2000 assemble astucieusement de nombreux matériaux moléculaires : fibres de cellulose naturelle, liées par pulvérisation avec une émulsion aqueuse d'éthylène-acétate de vinyle ; le support est imperméable en polyéthylène pour la face arrière, contrecollée avec une émulsion aqueuse de styrène-butadiène. L'impression est sérigraphique avec des encres dont le liant est à base de copolymère butadiène. L'épaississant est acrylique. Les encres contiennent des résines acryliques et des pigments minéraux et organiques exempts de métaux lourds[13]. Le revêtement du train à grande vitesse « Méditerranée », conçu par un grand couturier, est également un composite de matériaux moléculaires, intelligemment choisis et artistiquement disposés[14]. Savons dans les lessives[15] Les savons sont obtenus à partir de corps gras, formés à partir de glycérol et d'acides carboxyliques à longues chaînes aliphatiques -(CH2)n-CH3 (Fig. 5A). La stéarine traitée à chaud par une base donne un savon, l'anion stéarate. L'extrémité carboxylate est chargée et hydrophile, l'extrémité aliphatique est hydrophobe. Il s'agit d'une molécule amphiphile ou surfactant. La graisse n'est pas soluble dans l'eau, une tache de graisse sur un tissu ne se dissout dans l'eau pure. On place alors un savon dans l'eau (Figure 5B, Schéma 1) : l'extrémité hydrophobe interagit avec la graisse hydrophobe (2) ; l'extrémité hydrophile est solvatée par l'eau (3). Quand le nombre d'interactions devient suffisant, la graisse est entraînée en tout ou partie (4). Le nettoyage est évidemment favorisé par une température et une agitation adaptées. Les surfactants donnent une nouvelle illustration du remplacement des produits naturels (savons issus de graisses animales ou végétales) par des dérivés de synthèse : les carboxylates ne sont pas très solubles en présence d'ions sodium ou potassium des eaux de lavage « dures » et sont remplacés par des composés plus solubles comme le benzenesulfonate à chaîne branchée, obtenu à partir d'un sous-produit de l'industrie pétrolière le méthylpropène, de benzène et d'acide sulfurique. C'est l'un des « détergents anioniques » des lessives. Les savons illustrent aussi le souci de l'environnement : les chaînes branchées ne sont pas biodégradables et encombrent les eaux, d'où l'apparition sur le marché d'autres détergents « non ioniques », non branchés, tout aussi solubles grâce à des groupements fonctionnels alcool et éther (Fig. 5C). Cristaux liquides[16] Les cristaux liquides sont des matériaux moléculaires qui représentent un nouvel état de la matière, l'état mésomorphe, dont l'organisation est intermédiaire entre l'ordre tridimensionnel du cristal et le désordre relatif du liquide (Fig. 6A). Ils ne présentent pas de température de changement d'état liquide-solide mais des températures correspondant à des organisations intermoléculaires variées : nématiques, smectiques, … (Fig. 6B). Ces propriétés exceptionnelles reposent sur l'auto-organisation d'assemblées de molécules anisotropes, i.e. qui n'ont pas les mêmes propriétés dans les trois directions de l'espace (molécules allongées). La direction dans laquelle les molécules s'orientent en moyenne est appelée directrice. Les interactions entre les molécules qui conduisent à l'état mésomorphe sont faibles de type Van der Waals[17]. Lorsque l'on applique un champ électrique, les molécules s'orientent de manière à minimiser l'énergie du système. Si on place un cristal liquide entre deux plaques, l'une qui polarise la lumière, l'autre qui l'analyse, on peut disposer les polariseurs de manière à ce qu'aucune lumière ne passe (Fig. 6C). L'application d'un champ électrique oriente différemment les molécules et permet le passage de la lumière : le dispositif passe du noir à l'incolore (ou inversement), c'est le principe de l'affichage sur un écran. Des dispositifs électroniques de plus en plus élaborés (nématique « supertordu » et écrans « à matrice active » (où un transistor est associé à chaque domaine de cristal liquide) sont disponibles pour accélérer la vitesse d'affichage. Certains autres cristaux liquides (cholestériques chiraux) sont organisés de telle manière que la directrice tourne régulièrement autour d'un axe perpendiculaire à celle-ci. La directrice reprend la même orientation avec un pas p, dont dépend la réflexion de la lumière par le composé. Quand la température change, p varie (par contraction ou dilatation thermique) et le cristal liquide change de couleur : les thermomètres fondés sur ce principe sont très répandus. Élaboration de nouveaux matériaux fonctionnels L'un des problèmes importants posés aux laboratoires universitaires et industriels est la mise au point de nouveaux matériaux fonctionnels. Le concept de fonction est ici utilisé par opposition à celui de structure : le béton assure des propriétés structurales, le polymère des lentilles jetables assure de multiples fonctions : correction de la vue, transparence, perméabilité au dioxygène, hydrophilie). Les exemples ci-dessous montrent que la structure moléculaire contrôle les propriétés. Propriétés optiques La couleur des composés moléculaires est déterminée par la manière dont ils interagissent avec la lumière : ils peuvent la transmettre, la diffuser, la réfléchir de manière plus ou moins complexe en fonction de la structure moléculaire et de la microstructure du matériau[18]. Une lumière monochromatique de longueur d'onde l est constituée de photons d'énergie hn (h est la constante de Planck et n la fréquence de la lumière). La lumière visible correspond à des longueurs d'onde l comprises entre 400 et 800 nanomètres (nm). L'absorption de la lumière correspond à l'excitation d'un électron d'une orbitale moléculaire occupée vers une orbitale vacante. Seuls les photons dont l'énergie correspond exactement à la différence d'énergie entre les niveaux occupés et vacants sont absorbés. Par transmission, l'œil voit les longueurs d'onde non absorbées : si un matériau absorbe dans le rouge (600-800nm), il apparaît bleu par transmission. La structure des molécules peut être modifiée pour moduler les énergies des orbitales et donc la couleur. La garance, extraite de la racine de Rubia tinctorum, contient de l'alizarine qui peut être produite industriellement (Fig. 7). C'est la compréhension de la structure moléculaire des colorants (alizarine, indigo) qui a permis à l'industrie chimique allemande, à la fin du 19ème siècle d'asseoir sa suprématie dans ce domaine, en ruinant l'industrie d'extraction des colorants naturels[19]. Au-delà de la couleur, l'interaction de la lumière avec les matériaux a de multiples applications : l'absence d'absorption conduit à des matériaux transparents (polymères des lentilles oculaires[20] …) ; les crèmes de protection solaires ou les lunettes de soleil (verres photochromes[21]) protègent des rayons ultraviolets avec des molécules organiques conçues pour arrêter tout ou partie des rayons (écrans A, B …), comme l'ozone le fait dans la haute atmosphère. D'autres matériaux, asymétriques, traversés par une lumière de fréquence donnée, créent une lumière de fréquence double ou triple (matériaux pour l'optique non linéaire). D'autres systèmes émettent de la lumière par désexcitation d'une molécule excitée : ver luisant, diode luminescente, bâton lumineux chimiluminescent à base de luminol …). Le linge « plus blanc que blanc » existe bel et bien : il n'absorbe pas la lumière, il la diffuse et il en émet grâce à des additifs luminescents peroxygénés déposés sur les tissus par la lessive[22] ! Propriétés électriques La conductivité mesure la capacité d'un corps à conduire le courant. C''est l'une des grandeurs physiques qui varie le plus : plus de 20 ordres de grandeur entre les matériaux les plus isolants et les plus conducteurs. Les supraconducteurs ont même une conductivité qui tend vers l'infini. Les matériaux conducteurs métalliques sont généralement des métaux ou des oxydes. Les matériaux moléculaires sont pour la plupart isolants (s très faible), mais les chimistes ont réussi à transformer certains d'entre eux en conducteurs métalliques. L'idée est simple : en plaçant côte à côte un nombre infini d'atomes, on construit une bande d'énergie de largeur finie, formée d'une infinité de niveaux (ou d'orbitales) (Fig. 8, schémas 1-5). Quand la bande est vide et séparée en énergie des autres bandes (1), il y a ni électron, ni conduction. Quand la bande est pleine, chaque O.M. contient deux électrons qui ne peuvent se déplacer (isolant). Pour qu'il y ait conductivité, certains niveaux de la bande doivent être inoccupés (vacants ou partiellement vacants -3,4). Un semi-conducteur correspond au cas 5. La bande peut être construite par des orbitales atomiques du carbone dans un polymère comme le polyacétylène ou par l'empilement de molécules [tétrathiafulvalène (TTF) ou tétracyanoquinodiméthane (TCNQ)]. Le polyacétylène est isolant. Quand on l'oxyde, on enlève des électrons dans une bande qui devient partiellement occupée et le matériau devient conducteur. Il s'agit d'une discipline très active qui a valu le prix Nobel 2000 à trois chercheurs américains et japonais (A.J. Heeger, A.G. MacDiarmid, H. Shirakawa)[23]. Propriétés magnétiques[24] Ici encore les matériaux magnétiques traditionnels sont des métaux ou des oxydes (aimants domestiques, moteurs …). Les chimistes savent aujourd'hui construire des matériaux magnétiques moléculaires, à partir de complexes d'éléments de transition ou de radicaux organiques stables. À chaque électron est associé un spin S = 1/2 et un moment magnétique élémentaire. Les éléments de transition présentent 5 orbitales d où peuvent se placer 10 électrons. L'environnement chimique du métal constitué de molécules appelées ligands, permet de contrôler l'énergie des orbitales et la manière de les remplir avec des électrons : dans un complexe octaédrique ML6, par exemple, l'élément de transition est entouré de six molécules. La symétrie permet de prévoir que les cinq orbitales d dans le complexe sont séparées en deux familles : trois orbitales appelées t2g, deux orbitales appelées eg, séparées par une énergie ∆oct, variable avec les ligands. La théorie qui décrit le phénomène porte le joli nom de « champ cristallin » ou « champ des ligands ». Les électrons ont alors le choix : occuper le maximum d'orbitales (ce qui, pour les orbitales eg, coûte l'énergie ∆, ou se mettre en paire dans une même orbitale (ce qui coûte une énergie d'appariement P). Prenons l'exemple de 5 électrons (Fig. 9) : a) quand ∆ < P, le champ est faible et le spin est fort (S = somme des cinq spins parallèles = 5/2) ; b) quand ∆ > P, les électrons se regroupent par paires dans les orbitales t2g ; le champ est fort et le spin est faible (S = 1/2). Dans la situation intermédiaire où ∆ est à peu près égal à P, le complexe peut être de spin fort ou faible, en fonction des contraintes appliquées (température kT, pression, lumière). C'est le phénomène de transition de spin qui se manifeste par un changement de propriétés magnétiques et de couleur (car ∆ change lors de la transition). Quand la transition se manifeste à température ambiante et présente le phénomène dit d'hystérésis (la température de transition « spin fort-spin faible » (blanc-rouge, par exemple) est différente de celle de la transition inverse, spin faible-spin fort. Il existe un domaine de température où le système peut être spin fort (blanc, quand il vient des hautes températures), ou spin faible (rouge quand il vient des basses températures). C'est un système bistable, « à mémoire » en quelque sorte, qui « se souvient » de son histoire (thermique), utilisable pour l'affichage[25]. Au-delà de cet exemple, l'application de règles simples permet de construire des matériaux magnétiques. Quand deux électrons occupent deux orbitales sur deux atomes voisins A et B, trois situations existent : a) quand les orbitales se recouvrent, comme dans le cas de la molécule de dihydrogène, on obtient un couplage antiferromagnétique entre les spins (les spins sont d'orientation opposée, antiparallèle, le spin total ST = SA - SB = 0) ; b) quand les orbitales ne se recouvrent pas (elles sont orthogonales), les spins s'orientent parallèlement et le couplage est ferromagnétique S = SA + SB = 1) ; c) une situation amusante naît quand les orbitales se recouvrent et que le nombre d'électrons est différent sur A et B, alors ST = SA - SB ≠ 0, le spin résultant est non nul. Paradoxalement et dialectiquement, l'antiferromagnétisme engendre son contraire, un magnétisme résultant. Cette idée a valu le prix Nobel à Louis Néel. En étendant de proche en proche l'interaction dans les trois directions de l'espace, jusqu'à l'infini, à une certaine température critique, TCurie, un ordre magnétique à longue distance apparaît où tous les grands spins sont alignés dans un sens et tous les petits spins sont alignés en sens inverse. C'est ainsi qu'en utilisant la stratégie des orbitales orthogonales [ i.e. avec du chromicyanure de potassium (3 orbitales t2g) combiné avec du nickel(II) (2 orbitales eg)], Véronique Gadet, à obtenu un aimant ferromagnétique avec une température de Curie, 90 Kelvins (K), supérieure à la température de liquéfaction de l'azote liquide, 77K[26]. En utilisant la stratégie du ferrimagnétisme, Sylvie Ferlay a obtenu un aimant qui s'ordonne un peu au-dessus de la température ambiante (42°C ou 315K)[27]. Deux points méritent d'être soulignés dans ce résultat : le caractère rationnel de l'approche et la possibilité qu'il offre désormais de passer aux applications pratiques des aimants à précurseurs moléculaires. Un exemple est donné sur la figure 10. L'aimant à précurseur moléculaire est dans une ampoule dans un gaz inerte (argon) car exposé à l'air, il perd ses propriétés. Il est suspendu à un point fixe, comme un pendule. Quand il est froid, il est attiré par un aimant permanent (1). En ce point, il est chauffé par un faisceau lumineux (lampe, soleil). Quand sa température dépasse la température d'ordre, il n'est plus attiré par l'aimant et repart vers la verticale (2). Hors du faisceau, l'air ambiant le refroidit (3) et il est à nouveau attiré : d'où un mouvement oscillant où l'énergie lumineuse se transforme en énergie mécanique, en utilisant deux sources gratuites d'énergie : l'énergie solaire et l'air ambiant. Des millions de cycles ont ainsi été effectués sans fatigue du système. La recherche de nouveaux matériaux magnétiques moléculaires est très active, au niveau national et international. Certains matériaux sont capables de présenter plusieurs fonctions (magnétisme modulé par la lumière pour l'enregistrement photomagnétique)[28], aimants optiquement actifs (qui font tourner à volonté la lumière polarisée soit à droite soit à gauche)[29] … Matériaux pour l’électronique moléculaire[30] L'un des développements le plus excitant est celui des matériaux pour l’électronique moléculaire. Sous ce terme se cachent diverses interprétations : matériaux moléculaires pour l'électronique (dont les cristaux liquides ou les polymères sont des exemples) ou l'électronique à l'échelle de la molécule. Tous les exemples que nous avons cités jusqu'à présent faisaient intervenir des ensembles macroscopiques de molécules, i.e. des moles de molécules. La recherche se développe pour concevoir et réaliser des molécules se prêtant à des expériences d'électronique sur une seule entité moléculaire avec notamment des techniques de microscopie à champ proche (où la molécule joue le rôle de conducteur, de diode, de photodiode …). Par exemple le mouvement de miniaturisation de l'électronique (électronique portable, enregistrement de quantités de plus en plus grande d'information sur des surfaces de plus en plus petites, calcul quantique …) peut aboutir à la mise au point de dispositifs permettant de stocker l'information à l'échelle ultime, celle d'une seule molécule[31]… Le présent se conjugue déjà au futur. Conclusion Dans un monde qui va vers plus de complexité, le développement des matériaux moléculaires n'en est qu'à son début. Les possibilités offertes par la flexibilité de la chimie moléculaire et supramoléculaire qui ont ouvert ce cycle de leçons[32], la chimie des métaux de transition et la chimie du carbone, sont pour l'essentiel inexplorées mais immenses[33]. La compréhension fondamentale et pluridisciplinaire des propriétés de la matière, la capacité du chimiste à maîtriser la synthèse pour obtenir les propriétés souhaitées peuvent permettre de répondre de mieux en mieux aux nouveaux besoins de l'homme et de la société. À eux d'en faire bon usage. Remerciements Ce travail sur les matériaux moléculaires a été alimenté par de nombreuses discussions dans mon équipe, dans mon laboratoire et dans les nombreux établissements que j'ai fréquentés et financé par le Ministère de l'Education Nationale, le C.N.R.S., les contrats européens M3D et Molnanomag, l'ESF (Molecular Magnets). Les expériences ont été préparées par F. Villain. Les matériaux présentés ont été aimablement prêtés par de nombreux fournisseurs auxquels je suis reconnaissant. Je dédie cette contribution à la mémoire de deux scientifiques français dont j'ai beaucoup appris, Olivier Kahn décédé en décembre 1999 et Louis Néel, prix Nobel de Physique 1970, dont j'apprends la disparition.
[1] Elsa Triolet, L’âge de nylon, Œuvres romanesques croisées d'Elsa Triolet et d'Aragon, Robert Laffont, Paris, 1959. [2] Jacques Simon, Patrick Bernier, Michel Armand, Jacques Prost, Patrick Hémery, Olivier Kahn, Denis Jérôme, Les matériaux moléculaires, p. 401-404, La Science au présent, Tome II, Encyclopædia Universalis, 1992. P. Bassoul, J. Simon, Molecular materials, Wiley, New York, 2000. [3] J.P. Mercier, G. Zambelli, W. Kurz, Introduction à la science des matériaux, Presses polytechniques romandes, Lausanne, 1999. [4] R.E. Hummel, Understanding Materials Science, Springer, Berlin, 1998. [5] André Leroi-Gourhan, L'homme et la matière, Albin Michel, Paris, 1971. B. Bensaude-Vincent, I. Stengers, Histoire de la chimie, La découverte, Paris, 1993. [6] Encyclopædia Universalis, Paris, 1990, article Textiles (Fibres). Pour la Science, N° spécial, Fibres textiles et tissus biologiques, Décembre 1999. [7] Encyclopædia Universalis, Paris, 1990, article Matériaux. [8] Encyclopædia Universalis, Paris, 1990, articles Liaisons chimiques et Molécule. J.P.Malrieu, ce volume. L. Salem, Molécule, la merveilleuse, Interéditions, Paris, 1979. Y. Jean, F. Volatron, Atomistique et liaison chimique, Ediscience, Paris, 1995. T. A. Nguyen, Introduction à la chimie moléculaire, École Polytechnique, Ellipses, 1994. [9] P.W. Atkins, Molecules, Freeman, New York, 1987 et traduction française. [10] Ben Selinger, Chemistry in the Market Place, Harcourt Brace, Sidney, 1998. [11] Jean Bost, Matières plastiques (Tomes I et II), Technique et Documentation, Paris, 1985. Groupement Français des Polymères, Les polymères, Paris. [12] Encyclopædia Universalis, Paris, 1990, articles Macromolécules, Polymères et Textiles (Fibres). [13] Communication de la société Fort Williams (Lotus), Gien. [14] Communication du service commercial de la SNCF, Paris. [15] Encyclopædia Universalis, Paris, 1990, article Corps gras. Ben Selinger, Chemistry in the Market Place, Harcourt Brace, Sidney, 1998. [16] Encyclopædia Universalis, Paris, 1990, article Cristaux liquides et Mésomorphe (État). [17] Encyclopædia Universalis, Paris, 1990, article Van der Waals. [18] Encyclopædia Universalis, Paris, 1990, article Couleur. [19] Pour la Science, Dossier « La couleur », Avril 2000, notamment G. Bram, N. T. Anh, L'avènement des colorants synthétiques p. 52. [20] Communications de la société Ciba, Paris. [21] Communications de la Société Essilor, Paris. [22] Ben Selinger, Chemistry in the Market Place, Harcourt Brace, Sidney, 1998. [23] L'actualité Chimique, Société Française de Chimie, Novembre 2000, p. 64. [24] O. Kahn, Molecular Magnetism, VCH, New York, 1993. M. Verdaguer et al., Images de la Physique, CNRS, Paris, 2000. [25] O. Kahn, Magnétisme moléculaire, La Recherche, Paris, 1994. [26] V. Gadet et al., J. Am. Chem. Soc. 1992, 114, 9213-9214. [27] S. Ferlay et al. Nature, 378, 701, 1995. [28] M. Verdaguer, Science, 272, 698, 1996. A. Bleuzen, J. Am. Chem. Soc., 2000, 122, 6648. C. Cartier ibid. 6653. d) H. Hashimoto et al. ibid 704. [29] M. Gruselle, C. Train travail en cours. [30] M.C. Petty, M.R. Bryce, D. Bloor, Molecular Electronics, Edward Arnold, Londres, 1995. J. Jortner, M. Ratner, Molecular Electronics, I.U.P.A.C., Blackwell Science, 1997. [31] D. Gatteschi, R. Sessoli et al. Nature 1993, 365, 141. V. Marvaud, travail en cours. [32] J.M. Lehn, Chimie supramoléculaire, VCH, New York, 1997. T.A. Nguyen, J.M. Lehn, ce volume. [33] Dossier : 1999, Année internationale de la chimie, Pour la Science, Décembre 1999, p. 69-84 : J.M. Lehn, J.P. Launay, T. Ebbesen, G. Ourisson … La Science au présent, Encyclopædia Universalis, 1998 ; a) M.W. Hosseini, b) J.P. Sauvage, ; c) P. Bernier.

 

 DOCUMENT       canal-u.tv     LIEN

 
 
 
 

CINÉTIQUE - CHIMIE

 

 

 

 

 

 

 

Plan
cinétique
CHIMIE
Objectifs de la cinétique chimique
Notion de vitesse de réaction chimique
Pourquoi étudier la vitesse des réactions chimiques
Définition de la vitesse de réaction
Influence de la température et des concentrations sur la vitesse de réaction
L'influence de la température
Le coefficient de vitesse
L'énergie d'activation
Lorsqu'une réaction est exothermique
Lorsque la réaction est endothermique
L'influence des concentrations
L'ordre global de réaction
Les ordres partiels
Ordre de réaction
Réactions d'ordre 1
Application à la datation d'objets préhistoriques par le carbone 14
L'isotope radioactif du carbone 14
La réaction de désintégration
Réactions d'ordre 2
Les théories
Les réactions composées
Mécanismes réactionnels
Réaction élémentaire
Le mécanisme d'une réaction chimique
Principales réactions élémentaires
La rupture de la liaison
La formation d'une liaison
Voir plus
Plan
cinétique
(grec kinêtikos)
Consulter aussi dans le dictionnaire : cinétique
Cet article fait partie du dossier consacré à la réaction chimique.
Étude des lois qui régissent la vitesse des réactions chimiques.
CHIMIE

Les réactions chimiques, que les lois de la thermodynamique permettent de prévoir, se font à des vitesses très variables : si certaines sont explosives, comme le « coup de grisou » dans les mines de charbon, et d'autres très rapides, comme la combustion du magnésium dans les lampes flash des photographes, elles peuvent aussi être longues ; c'est le cas de la cuisson des aliments, par exemple, et plus encore de leur digestion, dans laquelle interviennent des réactifs naturels contenus dans les sucs digestifs.
Objectifs de la cinétique chimique

Les réactions chimiques ne sont pas toujours rapides et immédiates. Par exemple, la combustion d'une allumette, qui est simplement le résultat de la réaction du bois avec l'oxygène contenu dans l'air, demande un certain temps ; une bûche dans la cheminée va mettre également un certain temps pour se consumer. D'une manière générale, les réactions d'oxydation sont relativement lentes.
Notion de vitesse de réaction chimique

Certaines réactions d'oxydation peuvent néanmoins être très rapides : l'essence brûle presque instantanément dans le cylindre d'une voiture ; de même une accumulation de gaz de ville dans une pièce mal ventilée peut provoquer de très graves accidents. Mais, dans ces deux cas, il a fallu provoquer une explosion ; en effet, la présence d'air au-dessus de l'essence, dans le réservoir d'une voiture, n'est pas suffisante : il faut l'action d'une étincelle électrique, provoquée dans le cylindre par une bougie, pour que l'explosion se produise.
Les réactions d'oxydation ne sont pas les seules qui peuvent se faire à des vitesses plus ou moins grandes : le plâtre met un certain temps pour prendre, et le ciment, pour durcir, en demande encore plus.
Pourquoi étudier la vitesse des réactions chimiques

L'étude des vitesses auxquelles se font les réactions chimiques est importante pour des raisons pratiques aussi bien que théoriques. Un cuisinier a besoin, par exemple, de connaître le temps de cuisson du plat qu'il veut préparer ; de même, un industriel qui veut fabriquer un produit chimique a besoin de connaître la durée des différentes réactions à la base du procédé qu'il envisage d'utiliser pour mieux calculer le prix de revient du produit et s'assurer une vente à un prix compétitif.
La transformation des espèces, au cours d'une réaction chimique, est généralement un processus très complexe à l'échelle atomique, dont la connaissance est l'aboutissement des recherches du spécialiste de cinétique chimique. L'étude détaillée du mécanisme d'une réaction permet de comprendre quelles en sont les étapes les plus rapides. Pour accélérer une réaction, il est nécessaire d'accélérer l'étape la plus lente (qui constitue le point d'engorgement du processus total) ; en revanche, pour ralentir une réaction (une corrosion, par exemple), il suffit de ralentir le plus possible une des étapes du processus.
Ainsi, la cinétique chimique, qui étudie les vitesses de réaction, a deux buts distincts : mesurer à l'échelle macroscopique le temps nécessaire à la réalisation d'une réaction chimique et obtenir des informations afin de connaître les mécanismes réactionnels à l'échelle microscopique.
Définition de la vitesse de réaction

Pour étudier les vitesses de réaction, il est nécessaire d'en donner une définition précise.
Dans un système dont la transformation relève d'une réaction chimique unique, et dont l'équation stœchiométrique est indépendante du temps, une vitesse de conversion est définie par la dérivée de l'avancement de réaction par rapport au temps : dx/dt.
Dans le cas où tous les constituants font partie d'une seule phase de composition identique, dans tout le volume réactionnel de valeur V, on définit une vitesse volumique de réaction, dite le plus souvent vitesse de réaction, à l'instant t, et on a :
image: http://www.larousse.fr/encyclopedie/data/formules/CINETIQUE10.gif
n(B) est la quantité de B à l'instant t, [B] la concentration de B à cet instant, et v(B) le coefficient stœchiométrique de B dans l'expression choisie pour écrire le bilan de la réaction chimique (on rappelle que par définition [B] = n(B)/V).
Comme le rapport d[B]/v(B) a la même valeur quel que soit le constituant B envisagé d'une réaction donnée, par suite de la définition même des coefficients stœchiométriques, cette vitesse peut être déterminée à partir de l'évolution de la concentration d'un constituant B quelconque participant à cette réaction ; dans la pratique, on choisit le constituant dont la concentration est la plus facile à suivre.
Influence de la température et des concentrations sur la vitesse de réaction

Dans la plupart des réactions chimiques, la vitesse augmente rapidement avec la température et selon la concentration des constituants.
L'influence de la température

Parmi les facteurs qui conditionnent la vitesse d'une réaction, il en est au moins un qui est évident, même pour un non-chimiste : la température. Ainsi, la cuisson d'un aliment est d'autant plus rapide que la température à laquelle elle est effectuée est plus élevée (la réalisation des Cocotte-Minute est basée sur cette constatation : l'augmentation de la pression accroît la température d'ébullition de l'eau). Il faut, à 100 °C, environ trois minutes pour cuire un œuf (on peut schématiser cette cuisson en disant qu'il s'agit de la réaction de coagulation du blanc d'œuf). Mais l'alpiniste sait qu'en altitude, là où la pression atmosphérique est plus basse que dans la vallée, l'eau bout à une température moins élevée et que le temps nécessaire pour cuire un œuf à la coque est plus important.
Le coefficient de vitesse
La vitesse d'une réaction chimique double lorsqu'on augmente la température de 10 °C : cette règle est approximative, mais elle est d'un usage très pratique. Plus précisément, le Suédois Svante Arrhenius a établi expérimentalement, en 1889, une loi exponentielle, applicable à toutes les réactions : la vitesse est proportionnelle à un facteur, appelé coefficient de vitesse, qui s'écrit :
k = A e-E/RT
où A est une valeur caractéristique de chaque réaction (mais ne dépend pas de la température), R est la constante molaire des gaz parfaits, T est la température thermodynamique et E, énergie molaire d'activation ou plus simplement énergie d'activation, a une valeur pratiquement toujours comprise entre 80 et 250 kJ . mol−1, dépendant de la réaction envisagée.
L'énergie d'activation
Cette loi est interprétée en s'appuyant sur la théorie cinétique des gaz : l'énergie cinétique des molécules d'un ensemble donné, supérieure à une valeur donnée, croît exponentiellement avec la température.En effet, les molécules pouvant réagir sont celles qui ont une énergie supérieure à la valeur de l'énergie d'activation, et les molécules dont l'énergie est plus faible que l'énergie d'activation de la réaction ne peuvent réagir, mais il est possible d'en activer un certain nombre en augmentant la température ; c'est une activation thermique. Ce type d'activation est possible pour toutes les réactions chimiques ; elle est mise en jeu pour initier, par exemple, la combustion du magnésium d'une lampe flash en photographie grâce au courant de décharge d'un condensateur, qui apporte l'énergie thermique nécessaire par effet Joule.
Lorsqu'une réaction est exothermique
Dans le cas d’une réaction exothermique (qui produit de la chaleur), celle-ci provoque une augmentation de la température du milieu réactionnel, de sorte que la vitesse de réaction augmente et qu'à force de s'accroître elle peut aboutir à une réaction explosive. Dans la pratique, on comprend qu'il puisse y avoir un intérêt capital à refroidir le réacteur où se déroule la réaction pour évacuer la chaleur produite et éviter ainsi une telle explosion.
Lorsque la réaction est endothermique
Dans le cas d’une réaction endothermique (qui consomme de la chaleur), l'abaissement de la température du milieu réactionnel provoque une diminution de la proportion de molécules actives : la réaction peut même pratiquement s'arrêter ; il y aura intérêt, alors, à chauffer le réacteur pour que la réaction se poursuive.
L'influence des concentrations

L'expérience montre que la vitesse d'une réaction, à un moment donné, dépend généralement des concentrations des constituants de cette réaction à cet instant, et qu'elle est, de plus, proportionnelle à un facteur k, lequel est tributaire d'un certain nombre d'autres paramètres, comme la température, la pression, les concentrations initiales, etc. :
vitesse = kg(e[B]),
où e[B] désigne tout ou partie de l'ensemble des concentrations des substances présentes dans le milieu réactionnel (réactifs, produits, mais aussi éventuellement catalyseur, solvant) et g une fonction plus ou moins compliquée de cet ensemble, selon les cas.
L'ordre global de réaction

Il arrive que la vitesse d'une réaction
v(A) A + v(B) B +… → v(P) P + v(Q) Q +…,
prenne une forme simple du type :
(1) vitesse = k . [A]a . [B]b…,
où les exposants a, b… sont indépendants du temps et des concentrations, et généralement différents des coefficients stœchiométriques correspondants.
Dans le cas où la vitesse peut se mettre sous la forme (1), on dit que la réaction a un ordre global n défini par la relation :
n = a + b + …,
somme des exposants des concentrations dans l'expression de la vitesse.
Par exemple, pour la réaction des ions Br− sur les ions BrO3− en milieu acide :
5Br− + BrO3− + 6 H3O+ → 3Br2 + 9 H2O,
on trouve expérimentalement une vitesse telle que :
vitesse = k . [Br−]1 [BrO3−]1 [H3O+]2.
Les ordres partiels

Les exposants (a, b, etc.) sont appelés ordres partiels : dans l'exemple précédent, 1 est l'ordre partiel relatif aux ions Br− et aux ions BrO3−, 2 est l'ordre partiel relatif aux ions H3O+.
Les ordres partiels sont souvent égaux à 1 ou 2, mais, à la place des exposants entiers (tels que 1 ou 2 comme dans l'exemple précédent), on peut avoir des exposants fractionnaires et/ou négatifs : 1/2, −1.
Il peut aussi arriver que la concentration d'une espèce présente n'entre pas dans l'expression de la vitesse d'une réaction, c'est-à-dire que la vitesse soit indépendante de cette concentration : l'ordre partiel est nul dans ce cas.
Dans la pratique, on constate qu'il est rare de pouvoir exprimer la vitesse sous la forme simple (1). Tel est le cas de la réaction du brome avec l'hydrogène, étudiée par l'Allemand Max Ernst August Bodenstein en 1906 :
Br2 (g) + H2 (g) → 2HBr (g),
dont la vitesse, mesurée expérimentalement, s'écrit :
image: http://www.larousse.fr/encyclopedie/data/formules/CINETIQUE20.gif

En présence d'une telle situation, on dit que la réaction n'a pas d'ordre, puisque la vitesse ne peut pas se mettre sous la forme (1) et qu'on ne peut définir de grandeur n.
Ordre de réaction

À une température fixée, un grand nombre de réactions se déroulent à des vitesses qui sont proportionnelles à la concentration d'un ou de deux réactifs.
Réactions d'ordre 1

Si une réaction
aA + bB = pP + qQ
a par exemple une vitesse de la forme vitesse = k [A], on peut écrire :
image: http://www.larousse.fr/encyclopedie/data/formules/CINETIQUE30.gif

L'expression d[A]/[A] s'intègre facilement :
ln[A]/C0[A] = −k [A] t,
où [A] = C0 exp−k [A] t.
En posant ka = k [A] et en appelant C0[A] la concentration en A au temps t = 0. Il est possible de calculer la valeur de la concentration [A] au temps t en connaissant la concentration initiale et la valeur de k donnée par l'expérience.
Toutes les désintégrations radioactives obéissent à une telle loi exponentielle :
N(B) = N0(B)e−λt,
où N(B) est le nombre d'atomes B radioactifs au temps t et N0(B) correspond au nombre d'atomes B au temps initial et λ est appelé constante de désintégration radioactive.
Cette loi permet de prévoir qu'au bout d'un temps
t1/2 = (ln2)/λ
la moitié des atomes radioactifs se sont désintégrés.
Cette quantité, t1/2, s'appelle la période de demi-vie de B, ou période radioactive de l'atome B.
Application à la datation d'objets préhistoriques par le carbone 14

Williard Frank Libby a proposé une méthode de datation de résidus de végétaux ou d'animaux en se fondant sur la décroissance de leur concentration en carbone 14, isotope radioactif naturel du carbone dont la période est d'environ 5 640 ans.
L'isotope radioactif du carbone 14
Cet isotope radioactif provient du bombardement, par les neutrons produits par les rayons cosmiques, de l'azote des hautes couches de l'atmosphère selon la réaction :
image: http://www.larousse.fr/encyclopedie/data/formules/CINETIQUE40.gif

Ce carbone 14, et avec lui le carbone 12 stable, se combine avec l'oxygène de l'air, en proportions immuables depuis les temps préhistoriques, pour donner du dioxyde de carbone 14CO2, qui participe avec le dioxyde 12CO2 non radioactif à l'assimilation chlorophyllienne. Ainsi, les plantes et les organismes vivants ont une proportion toujours identique de 12C et de 14C.
La réaction de désintégration
Un gramme de carbone 14 se trouvant dans un tissu vivant émet environ 15 particules b par minute (une particule b n'est autre qu'un électron).
À la mort de l'organisme, les échanges avec l'atmosphère s'arrêtent et la quantité de carbone 14 diminue exponentiellement à cause de la réaction de désintégration qui produit un rayonnement b :
image: http://www.larousse.fr/encyclopedie/data/formules/CINETIQUE50.gif

Le rapport de la mesure de la radioactivité du vestige à dater à celle d'un tissu vivant permet de connaître la date de mort de l'organisme.
Cette méthode devient imprécise avec la décroissance de la radioactivité du carbone 14 dans l'échantillon analysé : au-delà de 37 000 à 42 000 ans, on ne peut plus dater avec une précision suffisante. La datation sur des objets plus anciens nécessite un indicateur radioactif ayant une période plus grande. Les géologues ont ainsi pu estimer l'âge de la Terre (4,5 milliards d'années) en utilisant l'uranium 238.
Réactions d'ordre 2

Dans le cas n = 2, la vitesse est décrite par une loi d'un type tel que :
vitesse = k[A] [B] ou vitesse = k [A]2.
Ici, la variation de la concentration d'un réactif au cours du temps n'est plus exponentielle. Par exemple, dans le second cas, où la réaction est d'ordre 2 par rapport à l'un des réactifs, la décroissance de [A] est une fonction hyperbolique du temps. Le temps de demi-vie dépend cette fois de la concentration initiale C0[A] du réactif A :
t1/2[A] = 1/k[A]C0[A].
Les théories

Différentes théories ont été élaborées pour rendre compte de ces résultats. La plus simple est la théorie des collisions, qui repose sur le fait qu'il est nécessaire que les molécules se rencontrent (collision) pour qu'une réaction se fasse  : plus leur concentration est grande, plus il y a de chances que la réaction se produise, d'où une loi de vitesse proportionnelle aux concentrations. Mais tous les chocs ne sont pas suivis d'une réaction, car il faut qu'au moment du choc les molécules soient orientées convenablement l'une par rapport à l'autre et qu'elles aient une énergie suffisante, d'où la notion d'énergie d'activation, seuil au-dessous duquel il ne peut rien se passer.
Les réactions composées

Les réactions isolées sont peu nombreuses. En général, les transformations chimiques résultent de la superposition ou de la succession de plusieurs réactions isolées.
Par exemple, la synthèse directe de l'ammoniac :
[N2 (g) + 3 H2 (g) ⇄ 2NH3 (g)].
Cette synthèse s'arrête avant que tous les réactifs soient totalement consommés : on peut l'expliquer en admettant que la réaction opposée entre en compétition avec la synthèse. Dans d'autres cas, plusieurs réactions compétitives ont lieu simultanément.
On peut également obtenir à l'issue d'une réaction des produits qui se transforment à leur tour (réactions successives).
On conçoit qu'on puisse obtenir des informations fondamentales sur le mécanisme des réactions chimiques à partir de l'observation des concentrations des espèces mises en présence, en fonction du temps.
Mécanismes réactionnels

L'équation d'une réaction chimique ne donne qu'un bilan : d'un côté s'écrivent les réactifs et de l'autre les produits de la réaction.
Quel est le processus qui permet la transformation au niveau moléculaire ? Quels sont les produits intermédiaires ?
Ce sont les questions que se pose effectivement le chimiste, car ce n'est que lorsqu'il connaîtra les détails de ce processus qu'il pourra agir : si une réaction est lente, il cherchera dans ces détails l'étape qui limite la vitesse ; en contournant l'étape lente, il pourra chercher le moyen d'accélérer la réaction globale en provoquant le passage par une autre voie. L'alpiniste ne fait pas autrement lorsqu'il cherche une voie vers le sommet, en contournant les difficultés trop grandes qu'il rencontre.
Réaction élémentaire

La réaction élémentaire est un acte chimique qui se produit, au niveau microscopique, entre particules spécifiées. Par exemple, la rencontre d'un ion H+ et d'un ion OH− conduit directement à une molécule d'eau.
On écrit :
image: http://www.larousse.fr/encyclopedie/data/formules/CINETIQUE60.gif

La flèche arrondie spécifie qu'un doublet électronique, non engagé dans une liaison avec l'ion OH−, va assurer une liaison avec l'ion H+ auquel il manque, justement, un doublet pour être stable, donnant ainsi directement une molécule d'eau ; une telle réaction est dite élémentaire.
D'une manière générale, le chimiste cherche la suite des réactions élémentaires que choisit la nature et qui conduisent des réactifs aux produits.
La molécularité d'une réaction élémentaire est, par définition, le nombre de particules impliquées comme réactifs dans celle-ci ; ce nombre est évidemment un nombre entier. C'est ainsi que, dans la réaction élémentaire précédente, la molécularité est égale à deux : on dit que la réaction est bimoléculaire.
On peut parfois supposer des réactions trimoléculaires, mais celles-ci sont nécessairement beaucoup plus rares que les réactions bimoléculaires, parce que peu probables, exigeant la rencontre en même temps de trois particules. Les réactions peuvent être aussi monomoléculaires, si l'on admet qu'une particule peut se détruire spontanément, sans intervention d'une collision avec une autre.
Le mécanisme d'une réaction chimique

Pour établir le mécanisme d'une réaction chimique, il faut rechercher l'ensemble des réactions élémentaires dont la somme est effectivement cette réaction. Ensuite, c'est le calcul de la vitesse de chaque réaction élémentaire, puis celle de la vitesse globale, qui doit évidemment être en accord avec la vitesse expérimentalement observée. L'expérience montre que très peu de réactions se produisent en une seule étape. Lorsque c'est le cas, on parle d'une réaction simple. Telles sont les désintégrations radioactives, les réactions de dimérisation (par exemple: 2NO2 → N2O4), les réactions d'isomérisation et quelques autres.
L'établissement d'un mécanisme réactionnel repose sur :
– une simplicité des réactions élémentaires, qui conduise à des étapes dont la molécularité soit la plus faible possible ;
– le minimum de changement de structure à chaque étape, car la probabilité de rupture de plusieurs liaisons en même temps est faible ;
– la réversibilité macroscopique (l'expérience enseigne que le chemin suivi par une réaction élémentaire dans un sens est le même que celui qui est suivi dans le sens opposé).
Par exemple, la synthèse de l'ammoniac :
N2 + 3 H2 → 2NH3,
doit se faire en plusieurs étapes élémentaires, dont chacune ne réalise que le minimum de modifications :
N2 → 2N,
N + H2 → NH + H,
H + N → NH,
NH + H2 → NH3.
Pour s'assurer de la possibilité d'un tel mécanisme, il est nécessaire de chercher, et de trouver, la trace des espèces intermédiaires N, H, NH dans le milieu réactionnel.
Principales réactions élémentaires

Les réactions élémentaires peuvent être classées d'après leur nature, ce qui donne un nombre restreint de catégories.
La rupture de la liaison

La rupture d'une liaison peut se faire de deux façons. Dans la première, les deux électrons constituant cette liaison se séparent; chaque électron va avec un atome, c'est le cas de la molécule de brome, qui peut ainsi se séparer en deux atomes :
Br:Br → Br. + .Br.
Il s'agit d'une rupture homolytique, c'est une réaction radicalaire.
Dans la seconde, les deux électrons restent ensemble et partent avec un des atomes, le plus électronégatif, ainsi :
Cl:CH3 → Cl−: + CH3+.
Cette rupture hétérolytique est une réaction monomoléculaire, ionique.
La formation d'une liaison

La liaison peut se faire, également, de deux façons :
Br. + . CH3 → Br:CH3, réaction radicalaire,
H+ + OH– → H:OH, réaction ionique.
Ce sont, dans les deux cas, des réactions bimoléculaires.
On peut avoir aussi un transfert d’électrons d'une espèce sur une autre ; c'est donc une réaction bimoléculaire, par exemple :
Cl. + H2 → HCl + H., réaction radicalaire.
La réaction est dite de substitution dans le cas :
C2H5I + Br. → C2H5Br + I., réaction radicalaire.

 

DOCUMENT   larousse.fr    LIEN

 

 
 
 
Page : [ 1 2 3 4 5 6 7 8 9 10 ] Précédente - Suivante
SARL ORION, Création sites internet Martigues, Bouches du Rhone, Provence, Hébergement, référencement, maintenance. 0ri0n
Site réalisé par ORION, création et gestion sites internet.


Google
Accueil - Initiation musicale - Instruments - Solf�ège - Harmonie - Instruments - Musiques Traditionnelles - Pratique d'un instrument - Nous contacter - Liens - Mentions légales / Confidentialite

Initiation musicale Toulon

-

Cours de guitare Toulon

-

Initiation à la musique Toulon

-

Cours de musique Toulon

-

initiation piano Toulon

-

initiation saxophone Toulon

-
initiation flute Toulon
-

initiation guitare Toulon