|
|
|
|
 |
|
COVID-19 : Un candidat vaccin innovant efficace contre la maladie dans des modèles précliniques |
|
|
|
|
|
COVID-19 : Un candidat vaccin innovant efficace contre la maladie dans des modèles précliniques
CC
Tandis que la campagne de vaccination contre la Covid-19 suit son cours, les efforts de recherche se poursuivent dans les laboratoires afin d’améliorer les vaccins disponibles et de développer de nouveaux candidats, efficaces et innovants pour lutter contre la pandémie et les variants, et permettant ainsi de protéger le plus grand nombre. Des chercheurs de l’Inserm et de l’Université Paris-Est Créteil à l’Institut de Recherche Vaccinale (VRI), du CEA et de l’Université Paris-Saclay ont développé un vaccin ciblant des cellules clés du système immunitaire, les cellules dendritiques. Celui-ci a montré son efficacité dans des modèles précliniques, induisant une réponse immunitaire protectrice contre le virus. Dans un premier temps, les chercheurs estiment que ce vaccin pourrait être utile pour les personnes convalescentes ou déjà vaccinées dont la réponse immunitaire a commencé à décliner, afin de « booster » leur immunité. Des essais cliniques chez l’Homme doivent démarrer en 2022. Les résultats sont publiés ce mercredi 1er septembre dans le journal Nature Communications.
PUBLIÉ LE 1 SEPTEMBRE 2021
Plus d’un an après le début de la pandémie de Covid-19, plusieurs vaccins ont été autorisés, grâce à des efforts de recherche sans précédents menés à travers le monde. Ces vaccins de première génération apportent beaucoup d’espoirs et sont un pilier central de la lutte contre le virus. Néanmoins, des questions se posent encore sur la durée de la réponse immunitaire ou la nécessité d’avoir recours à une vaccination de rappel. Par ailleurs, reprendre le contrôle de la pandémie signifie vacciner des milliards d’individus. Or, fabriquer suffisamment de doses pour protéger l’ensemble de la population mondiale constitue un défi considérable. Pour ces raisons, la recherche vaccinale se poursuit afin de développer des candidats vaccins supplémentaires et continuer de répondre à tous ces enjeux.
Pour lire la suite consulter le LIEN
DOCUMENT cea LIEN |
|
|
|
|
 |
|
A D N .....et demain? |
|
|
|
|
|
A D N........... et demain ?
En s'appuyant sur les informations que contiennent nos gènes, la génomique ouvre la voie à de nouvelles pratiques : le Big data, la médecine personnalisée, la thérapie génique.
Publié le 25 janvier 2018
BIG DATA ET SMART DATA
Avec l’avènement de la génomique, la biologie est entrée dans l’ère du Big data, des données massives. En 2013, 15 pétaoctets de données de séquences ont été générées dans le monde. Depuis, le nombre de séquenceurs et la capacité de séquençage n’ont fait qu’augmenter ! Recourir à des outils informatiques pour générer, stocker et analyser ces données est devenu vital. À titre d’exemple, pour reconstituer un génome bactérien de seulement quelques mégabases, il faut environ 200 000 milliards de comparaisons de caractères. Mais le séquençage n’est pas le seul fournisseur de données. La transcriptomique, la protéomique et plus récemment l’épigénomique, toutes les technologies “omiques” dépendent de l’informatique. Au carrefour de ces disciplines est née la bio-informatique. Elle permet de modéliser la conformation d’une protéine, de prédire sa fonction ou de calculer un flux énergétique… Ces simulations font gagner un temps précieux à la recherche, en oncologie ou en diabétologie par exemple. L’utilisation de ces données requiert cependant l'acceptation de la société et une surveillance éthique.
De nouvelles méthodes d'analyse restent encore à inventer pour passer du Big data au Smart data, l'utilisation intelligente des données. Croiser, interroger et exploiter différentes bases et sources de données devient l'enjeu du XXIe siècle.
LA MÉDECINE PERSONNALISÉE
Aujourd’hui la médecine envisage de personnaliser son offre. Comment ? En scrutant notre ADN afin d'identifier les différences individuelles. C’est aujourd’hui possible grâce aux formidables progrès technologiques qui ont considérablement baissé les coûts et les temps d’analyses du séquençage et du génotypage. Ces techniques permettent d’identifier les gènes impliqués dans différentes maladies et de proposer des diagnostics et des pronostics plus sûrs. Sur 7 275 maladies monogéniques recensées en 2017, plus de la moitié ont vu leur gène impliqué identifié. La présence de mutations génétiques chez une personne ne signifie pas toujours qu'elle développera une maladie, mais indique un facteur de prédisposition génétique, pouvant conduire à un suivi ciblé. Les tests permettent donc d'affiner un diagnostic et la prise en charge de la maladie.
Proposer un traitement adapté à chacun est le deuxième enjeu de la médecine personnalisée. Les taux de réponse aux traitements traditionnels varient entre 20 et 80 %. La cause ? Nos sensibilités individuelles aux médicaments qui peuvent, selon notre génome, se révéler plus ou moins efficaces et, dans certains cas, dangereux. Pour le cancer, les différents traitements possibles pourront être testés sur les cellules tumorales du patient. Séquencer les tumeurs peut également permettre de trouver le traitement le plus efficace en fonction du type d’oncogène muté. En juin 2016, la France s'est lancée officiellement dans la bataille mondiale de la médecine personnalisée en lui dédiant 12 plateformes de séquençage haut-débit du génome.
INFO : Le génome de 560 tumeurs du sein a été séquencé. Résultat : moins de 100 gènes ont été identifiés comme porteurs des 1 600 mutations détectées ; ce qui confirme la faisabilité de futurs traitements personnalisés.
LA THÉRAPIE GÉNIQUE
Le principe de la thérapie génique est d’introduire un gène sain, un gène médicament, dans le noyau d’une cellule malade. Aujourd’hui, elle englobe bien d’autres procédés, comme l’administration de molécules modulant l’expression des gènes. Quelles sont les maladies concernées par cette approche ? Les maladies génétiques, bien sûr, mais aussi des maladies comme le cancer, le Sida ou les maladies cardiovasculaires.
La thérapie génique aura des effets différents si elle s’opère sur des cellules somatiques ou des cellules germinales du patient. Dans le premier cas, les effets s’appliquent au patient et non à sa descendance. La France est un des leaders mondiaux dans ce domaine. La thérapie génique somatique a remporté de nombreux succès. En 2012, douze essais ont été conduits avec succès par une équipe de l’hôpital Henry Mondor, à Créteil, sur des patients atteints d’une forme avancée de la maladie de Parkinson. Dans le cas de la thérapie génique germinale, les effets sont permanents et transmis à la descendance ; elle est interdite en France par la loi de Bioéthique.
Utilisation des vecteurs viraux
L’étape critique de la thérapie génique est d’introduire le gène médicament dans la cellule. Cela peut se faire directement par un vecteur, viral ou artificiel. Un vecteur est une sorte de véhicule qui guide l’ADN vers sa cible et lui permet de traverser les différentes membranes cellulaires. Depuis des millions d’années, les virus développent des stratégies pour infiltrer les cellules et les infecter. Une fois rendus inoffensifs, ils font d’excellents candidats. Ces vecteurs viraux, dits intégratifs, insèrent leur ADN avec le gènemédicament dans le génome de l’hôte qui, en cas de division, le transmet aux cellules filles. C’est le cas des rétrovirus. Inconvénient majeur : leur insertion est aléatoire dans le génome de l’hôte et peut entraîner d’autres maladies. Dorénavant, les chercheurs se tournent vers les lentivirus, des vecteurs non intégratifs considérés comme plus sûrs. Avec eux, l’ADN médicament reste dans la cellule de l’hôte sans s’insérer dans son génome, il s’exprime pendant la durée de vie de la cellule puis disparaît avec elle. Malgré l’efficacité des vecteurs viraux, la piste des vecteurs artificiels est aujourd’hui à l’étude car elle est considérée comme plus sûre.
Découverts en 2013, les CRISPR (Clustered regularely interspaced short pallindromic regions) pourraient être “ le couteau suisse ” de la génétique. Cette technique permet de supprimer, modifier, ajouter des gènes à la demande, facilement et à moindre coût. Ainsi, il est possible de cibler précisément le point d’insertion des gènes médicaments et de remplacer les gènes défectueux par des gènes sains. Les maladies génétiques du sang et du foie pourraient être les premières à en bénéficier, de même que les greffes.
ESSAI DE THÉRAPIE GÉNIQUE : La maladie de Huntington est une maladie neurodégé- nérative. Elle est causée par la mutation d’un gène situé sur le chromosome 4. En France, elle touche actuellement 10 000 patients, âgés de 40 à 50 ans. La thérapie génique pourrait prolonger la durée de vie de ces patients, en injectant dans la zone du cerveau atteinte, via un vecteur viral, une protéine qui protègerait leurs neurones de la mort.
QUESTION D’ÉTHIQUE
La réflexion éthique analyse les changements que la recherche scientifique introduit dans la société, la responsabilité des chercheurs et les réactions que suscitent les nouvelles techniques. La bioéthique est apparue dans les années 1970. Cette réflexion est née de la perception des dangers potentiels attachés aux utilisations de la biologie et de la génétique. Aboutissement de plusieurs années de travaux, la Déclaration universelle sur le génome humain et les droits de l'homme a été adoptée en 1997 par l’Unesco. Dès 1994, la France s'est dotée de ses premières lois de bioéthique.
Objectif : donner un encadrement législatif aux innovations médicales qui impliquent une manipulation du vivant - des expérimentations sur l'homme à la procréation assistée.
Ces textes ont été révisés une décennie plus tard. La loi adoptée en 2004 a interdit le clonage, reproductif ou thérapeutique, ainsi que la recherche sur les cellules souches embryonnaires, hormis les expérimentations permettant des progrès thérapeutiques. Puis des États généraux de la bioéthique se sont tenus en 2009 ; une année durant laquelle des réflexions et des échanges ont été menés par un groupe de travail réunissant des médecins, des juristes, des universitaires et des chercheurs. Les sujets abordés ont été : cellules souches et statut de l'embryon humain ; diagnostic prénatal et préimplantatoire ; assistance médicale à la procréation et droits de l'enfant ; tests génétiques et droits des personnes ; dons, prélèvements et conservation d'éléments du corps humain et encadrement éthique ; accompagnement de fin de vie et soins palliatifs ; relations avec les pays en développement dans les domaines de la recherche et du soin. La loi relative à la bioéthique en vigueur à ce jour date de juillet 2011.
DOCUMENT cea LIEN
|
|
|
|
|
 |
|
Des métalloprotéines comme interrupteurs de l’expression des gènes |
|
|
|
|
|
Des métalloprotéines comme interrupteurs de l’expression des gènes
25.01.2024, par Anaïs Soubeyran
Mis à jour le 17.01.2024
Dans l’ensemble du monde vivant, des ions métalliques confèrent aux protéines des fonctions spéciales. Des chercheurs en biologie structurale sont parvenus à élucider le rôle d’interrupteur génétique de centres métalliques fer-soufre dans des protéines bactériennes.
Pour un micro-organisme tel qu’une bactérie, pouvoir réagir pour s’adapter rapidement aux perturbations de son environnement, est un processus absolument nécessaire à sa survie. Pour ce faire, elle dispose de protéines régulatrices, appelées « facteurs de transcription », qui peuvent intervenir au niveau de la lecture de l’ADN, afin de bloquer ou favoriser la synthèse d’autres protéines dont la fonction permet l’adaptation aux changements.
Pour assurer leur rôle, certaines protéines font intervenir un centre métallique, on parle alors de métalloprotéines. Le projet de recherche MANGO-ICING[1], porté par des chercheurs de l’Institut de biologie structurale (IBS), vise à élucider le rôle de plusieurs facteurs de transcription bactériens portant un assemblage d’atomes de fer et de soufre, appelé centre fer-soufre (Fe-S). Chez de multiples espèces bactériennes, ces centres sont impliqués dans la réponse à des perturbations environnementales diverses.
Des facteurs de transcription réceptifs aux signaux environnementaux
Comment des agrégats métalliques peuvent-ils capter des signaux environnementaux et jouer le rôle crucial d’interrupteur de la transcription génétique, provoquant des changements conformationnels dans la protéine régulatrice ? Pour répondre à cette question, les chercheurs de l’IBS se sont focalisés sur quatre facteurs de transcription (FT) à centre Fe-S, appartenant à une famille de protéines spécifique aux bactéries. Très proches structuralement, ces 4 FTs répondent pourtant à des signaux bien distincts, se fixant sur des séquences d’ADN particulières, afin de contrôler :
• La concentration cellulaire en fer (par le capteur de Fe RirA) ;
• La réponse au stress induit par le monoxyde d’azote (par le capteur de NO NsrR) ;
• L’assemblage des centres Fe-S (par le capteur de Fe et S IscR) ;
• L’équilibre d’oxydo-réduction de la cellule (par le capteur d’un excès d’électrons RsrR).
Quelles transformations de la structure du centre Fe-S provoquée par ces signaux peuvent expliquer de telles différences fonctionnelles pour la protéine, puis pour la bactérie ?
Piloté par Anne Volbeda, Juan Carlos Fontecilla-Camps et Eve de Rosny, le projet MANGO-ICING a pu compter sur une équipe multidisciplinaire d’une dizaine de personnes, en partenariat avec le groupe de recherche britannique de Nick Le Brun, de l’Université d’East Anglia, à Norwich. De nombreuses compétences et spécialités scientifiques ont été mobilisées : cristallographie, calculs théoriques, biochimie, ou encore spectroscopie.
Observer les métalloprotéines ou les défis de la cristallographie aux rayons X
Chaque protéine ayant une structure déterminante pour sa fonction biologique, l’équipe MANGO-ICING devait parvenir à caractériser l’agencement des atomes en trois dimensions de chacun des 4 FTs. Les étapes de production, de purification et enfin de cristallisation de ces métalloprotéines ont nécessité de délicates expérimentations dans un environnement sans oxygène, parce qu’elles y sont particulièrement sensibles. Ces conditions anaérobies ont été assurées par des « boîtes à gants » (figure 1).[2]
Figure 1: Manipulation des métalloprotéines sensibles à l’oxygène dans les « boîtes à gants » (BAG). L’équipe Métalloprotéines de l’IBS dispose d’une salle équipée de 6 BAGs, dont certaines sont équipées de robots qui simplifient considérablement le travail des cristallographes. Ce sont notamment : a, une station de pipetage, qui réalise automatiquement la préparation de nanogouttes de cristallisation dans des plaques, en utilisant des milliers de conditions avec des propriétés physico-chimiques différentes ; b, un bras robotique qui déplace les plaques de cristallisation pour les poser sous un appareil photo, afin de suivre l’apparition des cristaux au cours du temps. Souvent, dans une autre BAG, il est nécessaire de modifier, manuellement, les conditions de cristallisation pour obtenir des meilleurs cristaux. Dans la photo, on voit une des BAGs utilisées pour purifier une protéine sensible à l’O2. ©Eve de Rosny – IBS (CEA-CNRS-UGA)
Avant d’exposer la métalloprotéine à un faisceau de rayons X très puissant, un défi majeur s’impose : parvenir à la cristalliser. Eve de Rosny insiste sur le caractère empirique dans la recherche des conditions physico-chimiques de cristallisation pour chaque FT.
« Il n’y a pas de recette miracle, on teste différents sels, des agents précipitants, on modifie le pH… et de temps en temps une condition va permettre aux protéines de cristalliser, mais on ne peut pas prédire laquelle »
Des milliers de conditions ont été testées pour tenter de cristalliser les 4 FTs choisis. Iscr et RirA[3] ne se sont pas laissés cristalliser malgré plus de 3 600 conditions testées, contrairement à RsrR (figure 2A) et NsrR qui ont donné lieu à des cristaux exploitables.
Figure 2. Collection de données de diffraction d’un cristal. A) Cristaux de la forme réduite de la RsrR (taille environ 0.1 mm), obtenus en conditions d’anaérobie dans une BAG. ©Anne Volbeda – IBS (CEA-CNRS-UGA). B) Utilisation d’un faisceau très intense de rayons X (longueur d’onde fixe, réglable autour de 1 Å) généré par le synchrotron à Grenoble. ©ESRF/Jocelyn Chavit. C) Exemple d’un cliché de diffraction aux rayons X pour le cristal d’une protéine. Des milliers de clichés sont obtenus en tournant le cristal autour d’un axe perpendiculaire au faisceau de rayons X. Sur ces images, on détermine la distribution et l’intensité des tâches de diffraction qui dépendent de l’agencement des atomes dans le cristal. ©Anne Volbeda – IBS (CEA-CNRS-UGA)
Les précieux cristaux sont ensuite péchés avec des petites boucles et congelés dans la boîte à gants à -173 °C pour empêcher leur réaction avec l’oxygène ; ils peuvent alors être sortis et transportés dans l’azote liquide (-190 °C) jusqu’au synchrotron européen de Grenoble (figure 2B) à côté de l’IBS, pour être exposés aux rayons X, aussi à une très basse température d’environ -173 °C.
Il faut ensuite toute l’expertise et la patience du cristallographe, pour interpréter l’ensemble des données de diffraction obtenues grâce aux rayons X du synchrotron (figure 2C) et en déduire la structure en trois dimensions de la protéine (figure 3).
Anne Volbeda partage avec nous son enthousiasme de parvenir alors à « […] voir des choses que personne n’avait encore jamais vues. Les structures des protéines sont esthétiquement très belles. »
Figure 3. Résolution de la structure. À partir des images de diffraction, on construit un jeu de données expérimentales qui rassemble les amplitudes de toutes les ondes de rayons X diffractées par le cristal. A) Ensuite il faut de nombreux calculs pour obtenir les phases des ondes, et arriver à générer une carte de densité électronique. À partir de cette carte, le chercheur place les atomes et les liaisons qui les relient, en utilisant un écran graphique et des logiciels très performants. Dans la figure A, on voit le centre [2Fe-2S] de RsrR avec les liaisons chimiques fer-soufre en marron et jaune. Enfin, il parvient à la modélisation complète de la structure tridimensionnelle. B) Il y a plusieurs façons de représenter la structure d’une protéine – ici on voit une représentation de la surface de RsrR : les couleurs rouge et bleu montrent les surfaces avec des charges, respectivement, négatives et positives. Ensuite, il reste à résoudre la question la plus intéressante : comment fonctionne la protéine ? On parle de « relations structure-fonction ». ©Anne Volbeda – IBS (CEA-CNRS-UGA)
Élucider les liens entre la structure et la fonction du centre fer-soufre
La structure en 3D de la métalloprotéine permet aux chercheurs d’observer le centre Fe-S dans son environnement protéique. Il s’agit de comprendre comment un petit changement de structure de ce centre conduit à des changements majeurs dans le fonctionnement de la cellule.
Anne Volbeda nous explique le lien intime entre la structure et la fonction du centre fer-soufre : « C’est le centre fer-soufre qui capte le signal de l’environnement ; ensuite c’est l’interaction entre le centre et la protéine qui devient important. Le centre change sa conformation : il perd du fer, ou bien il capte ou perd un électron. Ces changements conformationnels dans l’environnement protéique, ont des conséquences pour l’affinité de la protéine pour l’ADN. »
Eve de Rosny précise qu’au sein de ces protéines, le centre Fe-S ne se trouve pas à l’endroit qui interagit avec l’ADN.
« Il y a une transmission de signal, depuis la zone de la protéine dans laquelle se trouve le centre, vers une autre zone de la protéine qui va changer de forme et conduire la protéine à ne plus reconnaître l’ADN. »
C’est donc une véritable cascade de changements structuraux dans la protéine, induite par la réaction chimique au niveau du centre Fe-S, qu’il s’agit pour les chercheurs de parvenir à retracer.
Le projet MANGO-ICING aura notamment permis de décrire structuralement le rôle d’interrupteur génétique d’un centre Fe-S, pour deux FTs.
RsrR ou les effets en cascade provoqués par un unique électron
La résolution de la structure de la métalloprotéine bactérienne RsrR[4] (Figure 3) accompagnée par plusieurs autres analyses[5] a permis de montrer comment un simple électron pouvait moduler la capacité de fixation à l’ADN de ce FT. La capture de l’électron au centre [2Fe-2S]2+ cause l’addition d’une charge positive dans son environnent proche, provoquant ainsi un réarrangement structural qui modifie la surface de la protéine et réduit ainsi ses capacités à se fixer à l’ADN.
NsrR ou comment contourner les défenses immunitaires de son hôte
Le projet MANGO-ICING a également permis de mieux comprendre comment le centre [4Fe-4S] au sein du FT NsrR[6], permet à une bactérie pathogénique de résister à l’une des armes immunitaires de son hôte : le monoxyde d’azote (NO). La production de ce gaz par les macrophages est un moyen de défense courant pour les organismes infectés par des bactéries. La NsrR permet à la bactérie de s’adapter et de résister à cette réponse en neutralisant le NO.
Eve de Rosny et Anne Volbeda insistent sur le caractère fondamental de leur recherche. Les applications de leurs travaux ne peuvent être imaginées que sur le plus long terme. Il s’agit pour les chercheurs d’apporter leur pierre, ou plutôt leur cristal, à la déjà vaste « encyclopédie des connaissances ».
[1] MANGO-ICING : Mechanisms of gene transcription regulation through iron-sulfur cluster signaling
[2] Le laboratoire de pointe de l’IBS, spécialisé dans les expérimentations en conditions sans oxygène, a été imaginé par Juan C. Fontecilla-Camps, bien avant l’émergence du projet MANGO-ICING. Il est l’une des raisons d’être de l’Institut de biologie structurale de Grenoble, créé conjointement par le Commissariat à l’énergie atomique et aux énergies alternatives (CEA) et le CNRS en janvier 1992.
[3] En partenariat avec l’équipe britannique de Nick E. Le Brun, Anne Volbeda et Juan C. Fontecilla-Camps, sont parvenus à stabiliser le centre Fe-S de la RirA et à modéliser partiellement la structure de cette protéine. Ceci a permis à un peu mieux comprendre comment cette protéine régule les niveaux de fer intracellulaires. Gray E et al., « Stabilisation of the RirA [4Fe-4S] cluster results in loss of iron-sensing function ». Chemical Science, 2023 August 22;14(36):9744-9758.
[4] Volbeda A. et al., « Crystal Structure of the Transcription Regulator RsrR Reveals a [2Fe-2S] Cluster Coordinated by Cys, Glu, and His Residues », Journal of the American Chemical Society, 2019 February 13;141(6):2367-2375.
[5] Crack J.C. et al., « Electron and proton transfers modulate DNA binding by the transcription regulator RsrR ». Journal of the American Chemical Society, 2020, February 20; 142:5104-5116.
[6] Rohac R. et al., « Structural determinants of DNA recognition by the NO sensor NsrR and related Rrf2-type [FeS]-transcription factors », Communications Biology, 2022 July 30;5(1):769.
DOCUMENT CNRS LIEN |
|
|
|
|
 |
|
L'émergence d'outils et de disciplines |
|
|
|
|
|
L'émergence d'outils et de disciplines
La connaissance de l'ADN et de son fonctionnement a fortement progressé ces dernières années grâce aux progrès technologiques.
Publié le 25 janvier 2018
L'évolution des technologies a été fulgurante. Dans les années 1990, il a fallu 13 ans pour séquencer les 3,3 milliards de bases du génome humain alors qu'aujourd'hui, une vingtaine de séquenceurs utilisés en simultané permettent de le faire en 15 minutes. Rapidité, faible coût et surtout faible quantité d'ADN requise ouvrent le champ à de nouvelles applications, notamment dans l'épigénétique et le diagnostic médical.
LE SÉQUENÇAGE
Des révolutions technologiques
En 40 ans, le séquençage a connu de vraies révolutions technologiques grâce aux avancées en physique, chimie et aux nanotechnologies. L'activité, coûteuse à ses débuts, a développé une organisation de type industriel et optimise les rendements grâce à des séquenceurs automatiques. Les dépôts d'échantillons se faisaient à la main sur les premiers séquenceurs à gel. Aujourd'hui, un séquenceur (destiné à analyser des génomes autres qu'humains) est intégré dans une clef USB et s'acquiert pour moins de 1 000 euros. La première technique largement utilisée dès 1977 a été la méthode Sanger, du nom du double prix Nobel de chimie qui l'a mise au point. À partir de 2005, apparaissent de nouvelles technologies de séquençage dites de 2e génération, tel que le pyroséquençage. Des millions de molécules, toutes issues du même échantillon, sont traitées en même temps ; c'est l'heure du séquençage haut débit ! Bien qu'elles aient toutes des spécificités très différentes, trois phases les caractérisent. La première, la préparation d'une collection d'ADN d'intérêt. La deuxième : l'amplification de l'ensemble des fragments afin de générer un signal suffisant pour que le séquenceur le détecte. Et enfin la phase de séquençage elle-même : pendant la synthèse du brin complémentaire, un signal est généré à chaque fois qu'un nouveau nucléotide est incorporé. Inconvénient : les séquences sont plus courtes et le taux d'erreur plus élevé que précédemment ; ce problème est aujourd'hui résolu sur les séquenceurs de dernière génération.
Les années 2010 voient se développer de nouvelles plateformes, dites de 3e génération. Ces appareils sont si sensibles qu’ils sont capables de séquencer une seule molécule d’ADN en quelques dizaines de minutes ! La dernière innovation présente un avantage majeur : pas besoin de répliquer l'ADN ni d'utiliser de fluorochromes, substance chimique capable d'émettre de la lumière par fluorescence. Sous la forme d’une puce dotée de nanopores (des canaux qui traversent une membrane), la machine capte directement les signaux électriques de chaque base d'ADN qui traverse le canal et permet de séquencer en un temps record. Cette méthode est pour l’instant réservée à de petits génomes, pas au génome humain.
La course aux génomes
La quête des gènes débute dans les années 1970. Lire la séquence de l’ADN devient indispensable pour les étudier, comprendre leur fonction et déceler les mutations responsables de maladies. Objectif ultime : déchiffrer les quelques 3,3 milliards de bases (3 300 Mb) du génome humain. Le projet est aussi ambitieux et presque aussi fou que celui d’envoyer un homme sur la Lune ! Les chercheurs commencent par de petits génomes. En 1995, le premier séquencé et publié est celui d’Haemophilus influenzae (1,8 Mb), une bactérie responsable de la méningite chez l’enfant. Suivra en 1996 celui d’un génome eucaryote unicellulaire, la levure Saccharomyces cerevisiae (12,5 Mb). Puis ce sera le tour du ver Caenorhabditis elegans (97 Mb) en 1998.
En 30 ans, les séquenceurs ont vu leur capacité augmenter d'un facteur 100 millions !
Quant au projet "Human genome", il démarre officiellement en 1989, pour une durée prévue de 15 ans et un budget global estimé à 3 milliards de dollars. Plus de 20 laboratoires de 7 pays différents sont impliqués. Les deux plus importants sont le Sanger Center (Grande-Bretagne) et le Whitehead Institute (États-Unis). En 1997, la France s'équipe d'une plateforme nationale, le Genoscope, et prend en charge le chromosome 14. La version complète de la séquence du génome humain sera publiée en avril 2003, avec plusieurs années d'avance (les chercheurs la complètent encore aujourd'hui). La course aux génomes continue : en août 2016, la base de données génomique internationale, en libre accès sur le site Gold (Genome On Line Database), faisait état de 13 647 organismes séquencés et publiés.
LA GÉNOMIQUE FONCTIONNELLE
La quête des gènes ressemble souvent à une pêche miraculeuse ! Une fois détectés et annotés, leur fonction reste à vérifier et les conditions de leur expression à découvrir. C'est là que la génomique structurelle atteint ses limites et que la génomique fonctionnelle prend le relais.
Cette dernière dresse un inventaire qualitatif et quantitatif sur deux niveaux : le transcriptome et le protéome. Le premier désigne l’ensemble des transcrits (ARNm) et le deuxième l’ensemble des protéines fabriquées. Alors que le génome est unique pour un organisme donné, il existe autant de transcriptomes et de protéomes que de stades de développement cellulaire ! Grâce aux nouvelles technologies de séquençage, l’étude de l’ensemble des transcrits permet non seulement de réaliser un catalogue des gènes exprimés mais aussi de quantifier l’expression des gènes et de déterminer la structure de chaque transcrit à un moment donné. Une deuxième technologie, les puces à ADN, permet aussi d’étudier le transcriptome par l’observation simultanée de l’expression de plusieurs milliers de gènes dans une cellule ou un tissu donné. L’analyse d’un transcriptome peut, par exemple, indiquer le stade de développement d’un cancer et permettre ainsi d’adapter au mieux le traitement du patient.
LE GÉNOTYPAGE : Le génotypage cherche les différences dans la séquence des génomes d'individus d'une même espèce. Ces différences constituent des " marqueurs génétiques ". Pour les trouver, le génotypage fait appel à trois technologies différentes ; le séquençage, les puces à ADN et la spectrométrie de masse. Les marqueurs potentiellement intéressants sont ceux qui se transmettent au sein d'une famille de la même manière et en même temps que le gène impliqué dans une maladie. Les études génétiques à haut débit consistent à analyser des centaines de milliers de ces marqueurs sur des milliers d'individus afin d'identifier et localiser les gènes prédisposant à des pathologies
LA MÉTAGÉNOMIQUE
Les technologies de séquençage permettent aujourd’hui d’appréhender le génome de tous les organismes d’un même écosystème en même temps ; la génomique fait place à la métagénomique.
Le projet international "MetaHIT ”, auquel participe le CEA, a pour objectif d’étudier le génome de l'ensemble des bactéries constituant la flore intestinale humaine. Lourde tâche : le métagénome contient 100 fois plus de gènes que le génome humain et 85 % des bactéries sont encore inconnues. Premier résultat obtenu en mars 2010 : le séquençage de l’ensemble des gènes révèle que chaque individu abrite au moins 170 espèces différentes de bactéries intestinales.
En avril 2011, les chercheurs font une découverte assez inattendue. Ce ne sont pas les 3 signatures bactériennes intestinales identifiées qui sont corrélées à l'origine géographique, à l’âge ou à la masse corporelle des individus mais bien quelques poignées… de gènes bactériens ! La preuve de concept est faite : ces derniers pourront être utilisés comme biomarqueurs pour aider au diagnostic des patients touchés par des maladies comme l’obésité ou la maladie de Crohn. En 2014, une nouvelle approche permet de reconstituer le génome de 238 espèces complètement inconnues. Les chercheurs ont également trouvé plus de 800 relations de dépendance qui permettent de mieux comprendre le fonctionnement global de cet écosystème intestinal.
L'ÉPIGÉNÉTIQUE
Peut-on tout expliquer par la génétique ? Dès 1942, Conrad Waddington souligne l'incapacité de cette discipline à expliquer le développement embryonnaire. Comment, en effet, expliquer la différence entre une cellule du foie et un neurone alors que toutes renferment le même programme ? Ce généticien désigne l'épigénétique comme le lien entre les caractères observables (phénotypes) et l'ensemble des gènes (génotypes).
Comparons l'organisme à une voiture ; la génétique serait l'établi sur lequel sont exposées toutes les pièces mécaniques et l'épigénétique la chaîne d'assemblage des différents éléments. Ainsi, l'épigénétique jouerait les chefs d'orchestre en indiquant pour chaque gène à quel moment et dans quel tissu il doit s'exprimer. Suite à la découverte des premiers mécanismes épigénétiques qui régulent l'expression des gènes, les chercheurs ont appris à « museler » un gène à des fins thérapeutiques.
Première méthode : par modification des protéines sur lesquelles s'enroule l'ADN. Le gène se compacte et devient alors inaccessible à la transcription ; il ne s'exprime plus. Seconde méthode : inactiver directement son ARNm avec des ARN interférence qui bloquent sa traduction. Depuis les années 1990, de nouvelles molécules associées à la régulation épigénétique sont découvertes. L'ensemble de ces molécules, le plus souvent trouvées dans l'ADN non-codant, forme l'épigénome. Complémentaire de la génétique, l'épigénétique donne une vue plus complète de la machinerie cellulaire et révèle une surprenante complexité dans les régulations de l'expression génique. Elle ouvre des perspectives dans la compréhension et le traitement de nombreuses maladies.
CNRGH et GENOSCOPE - Au sein de l'Institut de biologie François Jacob, ces deux services développent des stratégies et thématiques scientifiques distinctes, sur un socle de ressources technologiques communes. Le Centre national de recherche en génomique humaine (CNRGH) est axé sur la génomique humaine et la recherche translationnelle. Les recherches du Genoscope (aussi appelé Centre national de séquençage) portent sur l'exploration et l'exploitation de la biodiversité génomique et biochimique.
LE PROJET TARA
L'expédition « Tara Oceans » a débuté en septembre 2009. Pour explorer la diversité et évaluer la concentration du plancton, 40 000 prélèvements ont été réalisés. Leur analyse permet d'étudier l'effet du réchauffement climatique sur les systèmes planctoniques et coralliens, ses conséquences sur la vie marine et donc la chaîne alimentaire. Elle aidera à mieux comprendre l'origine de la vie sur Terre. Enfin, le plancton représente une ressource de biomolécules potentiellement intéressante pour la chimie verte, l'énergie ou encore la pharmacie. Le Genoscope est chargé de l'analyse génétique des 2 000 échantillons « protistes » et « virus » ! En mai 2016, la goélette est repartie pour l'expédition « Tara Pacific ».
Objectif : Mieux comprendre la biodiversité des récifs coralliens, leur capacité de résistance, d'adaptation et de résilience face aux changements climatiques et à la pollution et dégradations dues à l'Homme. À bord et à terre, les chercheurs continuent leur travail de séquençage pour établir une base de données de tous les échantillons prélevés.
DOCUMENT cea LIEN |
|
|
|
|
Page : [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 ] - Suivante |
|
|
|
|
|
|